Abstract
In this work we present goal-directed calculi for the Gödel-Dummett logic LC and its finite-valued counterparts, LC n (n ≥ 2). We introduce a terminating hypersequent calculus for the implicational fragment of LC with local rules and a single identity axiom. We also give a labelled goal-directed calculus with invertible rules and show that it is co-NP. Finally we derive labelled goal-directed calculi for LC n .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics. Archive for Mathematical Logic 41(4), 361–399 (2002)
Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Logic Journal of the IGPL 7(4), 447–480 (1999)
Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Annals of Mathematics and Artificial Intelligence 4(3–4), 225–248 (1991)
Avron, A., Konikowska, B.: Decomposition Proof Systems for Gödel-Dummett Logics. Studia Logica 69(2), 197–219 (2001)
Baaz, M., Fermüller, C.G.: Analytic calculi for projective logics. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 36–50. Springer, Heidelberg (1999)
Baaz, M., Fermüller, C.G., Salzer, G.: Automated deduction for many-valued logics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, ch. 20, pp. 1355–1402. Elsevier Science B.V., Amsterdam (2001)
Dummett, M.: A propositional calculus with denumerable matrix. Journal of Symbolic Logic 24, 97–106 (1959)
Dunn, J.M., Meyer, R.K.: Algebraic completeness results for Dummett’s LC and its extensions. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 17, 225–230 (1971)
Dyckhoff, R.: A deterministic terminating sequent calculus for Gödel-Dummett logic. Logic Journal of the IGPL 7(3), 319–326 (1999)
Fiorino, G.: An o(nlog n)-space decision procedure for the propositional Dummett logic. Journal of Automated Reasoning 27(3), 297–311 (2001)
Gabbay, D.: Semantical Investigations in Heyting’s Intuitionistic Logic. Reidel, Dordrecht (1981)
Gabbay, D., Olivetti, N.: Goal-directed Proof Theory. Kluwer Academic Publishers, Dordrecht (2000)
Gabbay, D., Olivetti, N.: Goal oriented deductions. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosopophical Logic, 2nd edn., vol. 9, pp. 199–285. Kluwer Academic Publishers, Dordrecht (2002)
Gödel, K.: Zum intuitionisticschen Aussagenkalkül. Anzeiger Akademie der Wissenschaften Wien, mathematisch-naturwiss. Klasse 32, 65–66 (1932)
Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University Press, Oxford (1993)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)
Larchey-Wendling, D.: Combining proof-search and counter-model construction for deciding gödel-dummett logic. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, p. 94. Springer, Heidelberg (2002)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)
Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics (submitted)
Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic 51, 125–157 (1991)
Sonobe, O.: A Gentzen-type formulation of some intermediate propositional logics. Journal of Tsuda College 7, 7–14 (1975)
Visser, A.: On the completeness principle: a study of provability in heyting’s arithmetic. Annals of Mathematical Logic 22, 263–295 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Metcalfe, G., Olivetti, N., Gabbay, D. (2003). Goal-Directed Calculi for Gödel-Dummett Logics. In: Baaz, M., Makowsky, J.A. (eds) Computer Science Logic. CSL 2003. Lecture Notes in Computer Science, vol 2803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45220-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-45220-1_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40801-7
Online ISBN: 978-3-540-45220-1
eBook Packages: Springer Book Archive