Goal-Directed Calculi for Gödel-Dummett Logics | SpringerLink
Skip to main content

Goal-Directed Calculi for Gödel-Dummett Logics

  • Conference paper
Computer Science Logic (CSL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2803))

Included in the following conference series:

Abstract

In this work we present goal-directed calculi for the Gödel-Dummett logic LC and its finite-valued counterparts, LC n (n ≥ 2). We introduce a terminating hypersequent calculus for the implicational fragment of LC with local rules and a single identity axiom. We also give a labelled goal-directed calculus with invertible rules and show that it is co-NP. Finally we derive labelled goal-directed calculi for LC n .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics. Archive for Mathematical Logic 41(4), 361–399 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Logic Journal of the IGPL 7(4), 447–480 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Annals of Mathematics and Artificial Intelligence 4(3–4), 225–248 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Avron, A., Konikowska, B.: Decomposition Proof Systems for Gödel-Dummett Logics. Studia Logica 69(2), 197–219 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baaz, M., Fermüller, C.G.: Analytic calculi for projective logics. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 36–50. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Baaz, M., Fermüller, C.G., Salzer, G.: Automated deduction for many-valued logics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, ch. 20, pp. 1355–1402. Elsevier Science B.V., Amsterdam (2001)

    Chapter  Google Scholar 

  7. Dummett, M.: A propositional calculus with denumerable matrix. Journal of Symbolic Logic 24, 97–106 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dunn, J.M., Meyer, R.K.: Algebraic completeness results for Dummett’s LC and its extensions. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 17, 225–230 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dyckhoff, R.: A deterministic terminating sequent calculus for Gödel-Dummett logic. Logic Journal of the IGPL 7(3), 319–326 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fiorino, G.: An o(nlog n)-space decision procedure for the propositional Dummett logic. Journal of Automated Reasoning 27(3), 297–311 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gabbay, D.: Semantical Investigations in Heyting’s Intuitionistic Logic. Reidel, Dordrecht (1981)

    MATH  Google Scholar 

  12. Gabbay, D., Olivetti, N.: Goal-directed Proof Theory. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  13. Gabbay, D., Olivetti, N.: Goal oriented deductions. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosopophical Logic, 2nd edn., vol. 9, pp. 199–285. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  14. Gödel, K.: Zum intuitionisticschen Aussagenkalkül. Anzeiger Akademie der Wissenschaften Wien, mathematisch-naturwiss. Klasse 32, 65–66 (1932)

    Google Scholar 

  15. Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  16. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  17. Larchey-Wendling, D.: Combining proof-search and counter-model construction for deciding gödel-dummett logic. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, p. 94. Springer, Heidelberg (2002)

    Google Scholar 

  18. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  19. Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics (submitted)

    Google Scholar 

  20. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic 51, 125–157 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sonobe, O.: A Gentzen-type formulation of some intermediate propositional logics. Journal of Tsuda College 7, 7–14 (1975)

    MathSciNet  Google Scholar 

  22. Visser, A.: On the completeness principle: a study of provability in heyting’s arithmetic. Annals of Mathematical Logic 22, 263–295 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Metcalfe, G., Olivetti, N., Gabbay, D. (2003). Goal-Directed Calculi for Gödel-Dummett Logics. In: Baaz, M., Makowsky, J.A. (eds) Computer Science Logic. CSL 2003. Lecture Notes in Computer Science, vol 2803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45220-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45220-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40801-7

  • Online ISBN: 978-3-540-45220-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics