Decidability Properties of Recursive Types | SpringerLink
Skip to main content

Decidability Properties of Recursive Types

  • Conference paper
Theoretical Computer Science (ICTCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2841))

Included in the following conference series:

  • 200 Accesses

Abstract

In this paper we study decision problems and invertibility for two notions of equivalence of recursive types. In particular, for recursive types presented by means of a recursion operator μ, we describe an algorithm showing that the natural equivalence generated by finitely many steps of folding and unfolding of μ-types is decidable. For recursive types presented by finite systems of recursive equations, we give a thoroughly coinductive characterization of the equivalence induced by their interpretation as infinite (regular) trees, from which the decidability of this equivalence follows. A formal proof of the former result, to our knowledge, has never appeared in the literature. The latter result, on the contrary, is known but we present here a new proof obtained as an application of general coalgebraic facts to the theory of recursive types. From these results invertibility is easily proved for both equivalences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  2. MacQueen, D., Plotkin, G., Sethi, R.: An ideal model for recursive polymorphic types. Information and Control 71, 95–130 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cardone, F., Coppo, M.: Type inference with recursive types. Syntax and Semantics. Information and Computation 92, 48–80 (1991)

    MATH  MathSciNet  Google Scholar 

  4. Fiore, M.: A coinduction principle for recursive data types based on bisimulation. In: Proceedings Eighth Symposium on Logic in Computer Science, IEEE, Los Alamitos (1993)

    Google Scholar 

  5. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249, 3–80 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jones, S.: The Implementation of Functional Programming Languages. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  7. Statman, R.: Recursive types and the subject reduction theorem. Technical Report 94–164, Carnegie Mellon University (1994)

    Google Scholar 

  8. Marz, M.: An algebraic view on recursive types. Applied Categorical Structures 7(12), 147–157 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coppo, M.: Type inference with recursive type equations. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 184–198. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality and subtyping. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 63–81. Springer, Heidelberg (1997)

    Google Scholar 

  11. Ariola, Z., Klop, J.: Equational term graph rewriting. Fundamenta Informaticae 26, 207–240 (1996)

    MATH  MathSciNet  Google Scholar 

  12. Scott, D.: Some philosophical issues concerning theories of combinators. In: Böhm, C. (ed.) Lambda-Calculus and Computer Science Theory. LNCS, vol. 37, pp. 346–366. Springer, Heidelberg (1975)

    Chapter  Google Scholar 

  13. Breazu-Tannen, V., Meyer, A.: Lambda calculus with constrained types. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 23–40. Springer, Heidelberg (1985)

    Google Scholar 

  14. Milner, R.: A Theory of Type Polymorphism in Programming. Journal of Computer and System Sciences 17, 348–375 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Science 25, 95–169 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Courcelle, B., Kahn, G., Vuillemin, J.: Algorithmes d’équivalence et de réduction à des expressions minimales, dans une classe d’équations récursives simples. In: Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 200–213. Springer, Heidelberg (1974)

    Google Scholar 

  17. Klop, J.: Term rewriting systems. In: Abramsky, S., Gabby, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, pp. 1–116. Oxford University Press, New York (1992)

    Google Scholar 

  18. Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: Introduction and survey. Theoretical Computer Science 121, 279–308 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cardone, F.: A coinductive completeness proof for the equivalence of recursive types. Theoretical Computer Science 275, 575–587 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Turi, D., Rutten, J.: On the foundations of final semantics: Non-standard sets, metric spaces, partial orders. Mathematical Structures in Computer Science 8, 481–540 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardone, F., Coppo, M. (2003). Decidability Properties of Recursive Types. In: Blundo, C., Laneve, C. (eds) Theoretical Computer Science. ICTCS 2003. Lecture Notes in Computer Science, vol 2841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45208-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45208-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20216-5

  • Online ISBN: 978-3-540-45208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics