Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances | SpringerLink
Skip to main content

Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques (RANDOM 2003, APPROX 2003)

Abstract

We show that a random instance of a weighted maximum constraint satisfaction problem (or max 2-csp), whose clauses are over pairs of binary variables, is solvable by a deterministic algorithm in polynomial expected time, in the “sparse” regime where the expected number of clauses is half the number of variables. In particular, a maximum cut in a random graph with edge density 1/n or less can be found in polynomial expected time.

Our method is to show, first, that if a max 2-csp has a connected underlying graph with n vertices and m edges, the solution time can be deterministically bounded by 2(m − n)/2. Then, analyzing the tails of the distribution of this quantity for a component of a random graph yields our result. An alternative deterministic bound on the solution time, as 2m/5, improves upon a series of recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bollobás, B., Borgs, C., Chayes, J.T., Kim, J.H., Wilson, D.B.: The scaling window of the 2-SAT transition. Random Structures Algorithms 18(3), 201–256 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bollobás, B.: Random graphs. Cambridge Studies in Advanced Mathematics, vol. 73. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Coppersmith, D., Gamarnik, D., Hajiaghayi, M., Sorkin, G.B.: Random MAX SAT, random MAX CUT, and their phase transitions, 49 pages (submitted for publication)

    Google Scholar 

  4. Coppersmith, D., Gamarnik, D., Hajiaghayi, M., Sorkin, G.B.: Random MAX SAT, random MAX CUT, and their phase transitions. In: Proceedings of the 14th Annual ACM–SIAM Symposium on Discrete Algorithms, Baltimore, MD. ACM, New York (2003)

    Google Scholar 

  5. Coja-Oghlan, A., Moore, C., Sanwalani, V.: Max k-cut and approximating the chromatic number of random graphs (to appear)

    Google Scholar 

  6. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: 33th Annual Symposium on Foundations of Computer Science, Pittsburgh, PA, pp. 620–627. IEEE Comput. Soc. Press, Los Alamitos (1992)

    Chapter  Google Scholar 

  7. Wenceslas Fernandez de la Vega, On random 2-SAT (1992) (manuscript)

    Google Scholar 

  8. Gramm, J., Hirsch, E.A., Niedermeier, R., Rossmanith, P.: New worst-case upper bounds for MAX-2-SAT with an application to MAXCUT. Discrete Applied Mathematics (in press)

    Google Scholar 

  9. Goerdt, A.: A threshold for unsatisfiability. J. Comput. System Sci. 53(3), 469–486 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kulikov, A.S., Fedin, S.S.: Solution of the maximum cut problem in time 2|E|/4, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov(POMI) 293, no. Teor. Slozhn. Vychisl. 7, 129–138, 183 (2002)

    Google Scholar 

  11. Krivelevich, M., Vu, V.H.: Approximating the independence number and the chromatic number in expected polynomial time. J. Comb. Optim. 6(2), 143–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Taraz, A., Coja-Oghlan, A.: Colouring random graphs in expected polynomial time. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 487–498. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation, and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scott, A.D., Sorkin, G.B. (2003). Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds) Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques. RANDOM APPROX 2003 2003. Lecture Notes in Computer Science, vol 2764. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45198-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45198-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40770-6

  • Online ISBN: 978-3-540-45198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics