Soft Constraints: Complexity and Multimorphisms | SpringerLink
Skip to main content

Soft Constraints: Complexity and Multimorphisms

  • Conference paper
Principles and Practice of Constraint Programming – CP 2003 (CP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2833))

Abstract

Over the past few years there has been considerable progress in methods to systematically analyse the complexity of classical (crisp) constraint satisfaction problems with specified constraint types. One very powerful theoretical development in this area links the complexity of a set of classical constraints to a corresponding set of algebraic operations, known as polymorphisms.

In this paper we begin a systematic investigation of the complexity of combinatorial optimisation problems expressed using various forms of soft constraints. We extend the notion of a polymorphism by introducing a more general algebraic operation, which we call a multimorphism. We show that a number of maximal tractable sets of soft constraints, both established and novel, can be characterised by the presence of particular multimorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints 4, 199–240 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bjäreland, M., Jonsson, P.: Exploiting bipartiteness to identify yet another tractable subclass of CSP. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 118–128. Springer, Heidelberg (1999)

    Google Scholar 

  3. Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings 43rd IEEE Symposium on Foundations of Computer Science, FOCS 2002, pp. 649–658. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

  4. Bulatov, A.A., Krokhin, A.A., Jeavons, P.G.: Constraint satisfaction problems and finite algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 272–282. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Bulatov, A.A., Krokhin, A.A., Jeavons, P.G.: The complexity of maximal constraint languages. In: Proceedings 33rd ACM Symposium on Theory of Computing, STOC 2001, pp. 667–674 (2001)

    Google Scholar 

  6. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: A tractable class of soft constraints. Technical Report CSD-TR-02-14, Computer Science Department, Royal Holloway, University of London, Egham, Surrey, UK (short version to appear in Proceedings of IJCAI 2003) (December 2002)

    Google Scholar 

  7. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: An investigation of the multimorphisms of tractable and intractable classes of valued constraints. Technical Report CSD-TR-03-03, Computer Science Department, Royal Holloway, University of London, Egham, Surrey, UK (2003)

    Google Scholar 

  8. Cooper, M.C., Cohen, D.A., Jeavons, P.G.: Characterising tractable constraints. Artificial Intelligence 65, 347–361 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, vol. 7 (2001)

    Book  Google Scholar 

  10. Cunningham, W.H.: Minimum cuts, modular functions, and matroid polyhedra. Networks 15(2), 205–215 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23(4), 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal of Computing 28, 57–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fleischer, L., Iwata, S.: Improved algorithms for submodular function minimization and submodular flow. In: Proceedings of the 32th Annual ACM Symposium on Theory of Computing, pp. 107–116 (2000)

    Google Scholar 

  14. Fujishige, S., Iwata, S.: Bisubmodular function minimization. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, p. 160. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  16. Grötschel, M., Lovasz, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–198 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. Journal of the ACM 48(4), 761–777 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jeavons, P.G., Cohen, D.A., Cooper, M.C.: Constraints, consistency and closure. Artificial Intelligence 101(1–2), 251–265 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jeavons, P.G., Cohen, D.A., Gyssens, M.: A test for tractability. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 267–281. Springer, Heidelberg (1996)

    Google Scholar 

  20. Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44, 527–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jeavons, P.G., Cohen, D.A., Gyssens, M.: How to determine the expressive power of constraints. Constraints 4, 113–131 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jeavons, P.G., Cohen, D.A., Pearson, J.K.: Constraints and universal algebra. Annals of Mathematics and Artificial Intelligence 24, 51–67 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jeavons, P.G., Cooper, M.C.: Tractable constraints on ordered domains. Artificial Intelligence 79(2), 327–339 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Khatib, L., Morris, P., Morris, R., Rossi, F.: Temporal constraint reasoning with preferences. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), Seattle, USA, pp. 322–327 (2001)

    Google Scholar 

  25. Kirousis, L.: Fast parallel constraint satisfaction. Artificial Intelligence 64, 147–160 (1993)

    Article  MATH  Google Scholar 

  26. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John Wiley & Sons, Chichester (1988)

    MATH  Google Scholar 

  27. Pearson, J.K., Jeavons, P.G.: A survey of tractable constraint satisfaction problems. Technical Report CSD-TR-97-15, Royal Holloway, Univ. of London (1997)

    Google Scholar 

  28. Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. DVW, Berlin (1979)

    Google Scholar 

  29. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

    Google Scholar 

  30. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. JCTB: Journal of Combinatorial Theory, Series B 80, 346–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. van Hentenryck, P., Deville, Y., Teng, C.-M.: A generic arc-consistency algorithm and its specializations. Artificial Intelligence 57, 291–321 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, D.A., Cooper, M., Jeavons, P., Krokhin, A. (2003). Soft Constraints: Complexity and Multimorphisms. In: Rossi, F. (eds) Principles and Practice of Constraint Programming – CP 2003. CP 2003. Lecture Notes in Computer Science, vol 2833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45193-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45193-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20202-8

  • Online ISBN: 978-3-540-45193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics