Abstract
From investigations on the impact of Disk I/O load on CPU load, we have found that the immanent Disk I/O load could affect the resource scheduler’s decision on assigning an appropriate storage resource to a job in which the Disk I/O operation is dominant. A possible but improper assignment can prolong the execution time of a task due to the contention for Disk I/O when the Disk I/O load in the machine is higher than the CPU load. Because the scheduler uses CPU load only for computing schedules, it does not even know the potential Disk I/O contention that could occur at the assigned resource. To avoid or at least alleviate these effects, we have developed a performance monitoring system and on-line performance forecast functions for providing forecast information to the Grid. In this paper, we examine the impact of Disk I/O workload on the CPU workload using our system, hereinafter referred to as Storage Weather Service(SWS). We evaluate several prediction methods in order to get an insight on varying Disk I/O workload.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnold, D., Agrawal, S., Blackford, S., Dongarra, J., Miller, M., Seymour, K., Sagi, K., Shi, Z., Vadhiyar, S.: Users’ Guide to NetSolve V1.4.1, Innovative Computing Dept. University of Tennessee, Technical Report,ICL-UT-02-05 (June 2002)
Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. The International Journal of Supercomputer Applications and High Performance Computing, 115–128 (1997)
Wolski, R., Spring, N.T., Hayes, J.: The Network Weather Service: A Distributed Resource Performance Forecasting Service for Metacomputing. Future Generation Computer Systems 15, 757–768 (1999)
Rosti, E., Serazzi, G., Smirni, E., Squillante, M.S.: The Impact of I/O on Program Behavior and Parallel Scheduling. In: Proceeding of IOPADS (1998)
Dinda, P.A., O’Hallaron, D.R.: Host Load Prediction Using Linear Models, No. 4, Vol. 3, Cluster Computing (2000)
Nakada, H., Sato, M., Sekiguchi, S.: Design and Implementations of Ninf: towards a Global Computing Infrastructure. Future Generation Computing Systems, Metacomputing Issue 15, 649 (1999)
Shen, X., Choudhary, A.: A Distributed Multi-Storage Resource Architecture and I/O Performance Prediction for Scientific Computing. In: Ninth IEEE International Symposium on High-Performance Distributed Computing(HPDC 2000) (2000)
Faerman, M., Birnbaum, A., Casanova, H., Berman, F.: Resoruce Allocation for Steerable Parallel Parameter Searches. In: IEEE Proceedings of the 3rd International Workshop on Grid Computing (November 2002)
Berman, F., Gannon, D., Johnsson, L., Kennedy, K., Kesselman, C., Mellor-Crummey, J., Reed, D., Torczon, L., Wolski, R.: The GrADS Project: Software Support for High-Level Grid Application Development. Intl Journal of High Performance Computing Applications (2001)
Casanova, H., Bartol, T., Berman, F., Birnbaum, A., Dongarra, J., Ellisman, M., Faerman, M., Gockay, E., Miller, M., Obertelli, G., Pomerantz, S., Sejnowski, T., Stiles, J., Wolski, R.: The Virtual Instrument: Support for Grid-enabled Scientific Simulations. Submitted to Journal of Parallel and Distributed Computing (2002)
Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS Parameter Sweep Template: User-Level Middleware for the Grid. In: SC2000 (2000)
Desprez, F., Quinson, M., Suter, F.: Dynamic Performance Forecasting for Network Enabled Servers in an Heterogeneous Environment. In: Int’l Conference on PDPTA 2001 (2001)
Aida, K., Takefusa, A., Nakada, H., Matsuoka, S., Sekiguchi, S., Nagashima, U.: Performance Evaluation Model for Scheduling in a Global Computing System. The International Journal of High-Performance Computing Applications 14(3), 268–279 (2000)
Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid:An Open Grid Services Architecture for Distributed Systems Integration, Open Grid Service Infrastructure WG, Global Grid Forum, June 22 (2002)
Vazhkusai, S., Schopf, M.J.: Using Disk Throuphput Data in Predictions of Enf-to-End Grid Data Transfers. In: GRID 2002 Workshop in conjunction with SC2002 (2002)
Smith, W., Foster, I., Taylor, V.: Predicting Application Run Times Using Historical Information. In: Proceedings of the IPPS/SPDP 1998 Workshop on Job Scheduling Strategies for Parallel Processing (1998)
Iamnitchi, A., Foster, I.: On Fully Decentralized Resource Discovery in Grid Environments. In: Lee, C.A. (ed.) GRID 2001. LNCS, vol. 2242, pp. 51–62. Springer, Heidelberg (2001)
Weissman, J.B., Srinivasan, P.: Ensemble Scheduling: Resource Co-allocation on the Computational Grid. In: Lee, C.A. (ed.) GRID 2001. LNCS, vol. 2242, pp. 87–98. Springer, Heidelberg (2001)
SWS: Storage Weather Service, http://sws.kjist.ac.kr
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, D., Ramakrishna, R.S. (2003). Disk I/O Performance Forecast Using Basic Prediction Techniques for Grid Computing. In: Malyshkin, V.E. (eds) Parallel Computing Technologies. PaCT 2003. Lecture Notes in Computer Science, vol 2763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45145-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-45145-7_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40673-0
Online ISBN: 978-3-540-45145-7
eBook Packages: Springer Book Archive