Load Imbalance in Parallel Programs | SpringerLink
Skip to main content

Load Imbalance in Parallel Programs

  • Conference paper
Parallel Computing Technologies (PaCT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2763))

Included in the following conference series:

  • 464 Accesses

Abstract

Parallel programs experience performance inefficiencies as a result of dependencies, resource contentions, uneven work distributions and loss of synchronizations among processors. The analysis of these inefficiencies is very important for tuning and performance debugging studies. In this paper we address the identification and localization of performance inefficiencies from a methodological viewpoint. We follow a top down approach. We first analyze the performance properties of the programs at a coarse grain. We then study the behavior of the processors and their load imbalance. The methodology is illustrated on a study of a message passing computational fluid dynamic program.

This work has been supported by the Italian Ministry of Education, University and Research (MIUR) under the FIRB Programme, by the University of Pavia under the FAR Programme and by the Italian Research Council (CNR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calzarossa, M., Massari, L., Merlo, A., Pantano, M., Tessera, D.: Medea: A Tool for Workload Characterization of Parallel Systems. IEEE Parallel and Distributed Technology 3(4), 72–80 (1995)

    Article  Google Scholar 

  2. De Rose, L., Zhang, Y., Reed, D.A.: SvPablo: A Multi-Language Performance Analysis System. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) TOOLS 1998. LNCS, vol. 1469, pp. 352–355. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Ferschweiler, K., Harrah, S., Keon, D., Calzarossa, M., Tessera, D., Pancake, C.: The Tracefile Testbed – A Community Repository for Identifying and Retrieving HPC Performance Data. In: Proc. 2002 International Conference on Parallel Processing, pp. 177–184. IEEE Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  4. Hartigan, J.A.: Clustering Algorithms. Wiley, Chichester (1975)

    MATH  Google Scholar 

  5. Heath, M.T., Etheridge, J.A.: Visualizing the Performance of Parallel Programs. IEEE Software 8, 29–39 (1991)

    Article  Google Scholar 

  6. Helm, B., Malony, A., Fickas, S.: Capturing and Automating Performance Diagnosis: the Poirot Approach. In: Proceedings of the 1995 International Parallel Processing Symposium, pp. 606–613 (1995)

    Google Scholar 

  7. Karavanic, K.L., Miller, B.P.: Improving Online Performance Diagnosis by the Use of Historical Performance Data. In: Proc. SC 1999 (1999)

    Google Scholar 

  8. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic Press, London (1979)

    MATH  Google Scholar 

  9. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K.H., Irvin, R.B., Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Measurement Performance Tool. IEEE Computer 28(11), 37–46 (1995)

    Article  Google Scholar 

  10. Roth, P.C., Miller, B.P.: Deep Start: A Hybrid Strategy for Automated Performance Problem Searches. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 86–96. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Simmons, M.L., Hayes, A.H., Brown, J.S., Reed, D.A. (eds.): Debugging and Performance Tuning for Parallel Computing Systems. IEEE Computer Society, Los Alamitos (1996)

    Google Scholar 

  12. Williams, W., Hoel, T., Pase, D.: The MPP Apprentice Performance Tool: Delivering the Performance of the Cray T3D. In: Decker, K.M. (ed.) Programming Environments for Massively Parallel Distributed Systems, pp. 333–345. Birkhauser, Basel (1994)

    Chapter  Google Scholar 

  13. Yan, J.C., Sarukkai, S.R.: Analyzing Parallel Program Performance Using Normalized Performance Indices and Trace Transformation Techniques. Parallel Computing 22(9), 1215–1237 (1996)

    Article  MATH  Google Scholar 

  14. Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward Scalable Performance Visualization with Jumpshot. The International Journal of High Performance Computing Applications 13(2), 277–288 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calzarossa, M., Massari, L., Tessera, D. (2003). Load Imbalance in Parallel Programs. In: Malyshkin, V.E. (eds) Parallel Computing Technologies. PaCT 2003. Lecture Notes in Computer Science, vol 2763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45145-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45145-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40673-0

  • Online ISBN: 978-3-540-45145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics