Abstract
We construct efficient or query efficient quantum property testers for two existential group properties which have exponential query complexity both for their decision problem in the quantum and for their testing problem in the classical model of computing. These are periodicity in groups and the common coset range property of two functions having identical ranges within each coset of some normal subgroup.
Research partially supported by the EU 5th framework programs RESQ IST-2001-37559 and RAND-APX IST-1999-14036, and by CNRS/STIC 01N80/0502 and 01N80/0607 grants, by ACI Cryptologie CR/02 02 0040 grant of the French Research Ministry, and by OTKA T42559, T42706, and NWO-OTKA N34040 grants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179 (1984)
Buhrman, H., Fortnow, L., Newman, I., Röhrig, H.: Quantum property testing. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (2003)
Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comput. System Sci. 47(3), 549–595 (1993)
van Dam, W., Magniez, F., Mosca, M., Santha, M.: Self-testing of universal and fault-tolerant sets of quantum gates. In: Proc. 32nd ACM STOC, pp. 688–696 (2000)
Ettinger, M., Høyer, P.: On quantum algorithms for noncommutative hidden subgroups. Adv. in Appl. Math. 25(3), 239–251 (2000)
Fischer, E.: The art of uninformed decisions: A primer to property testing, the computational complexity. In: The Computational Complexity Column, vol. 75, pp. 97–126. The Bulletin of the EATCS (2001)
Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and orbit coset in quantum computing. In: Proc. 35th ACM STOC (2003)
Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)
Hales, L.: The Quantum Fourier Transform and Extensions of the Abelian Hidden Subgroup Problem. PhD thesis, University of California, Berkeley (2002)
Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. In: Proc. 41st IEEE FOCS, pp. 515–525 (2000)
Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem. Technical report no. 9511026, Quantum Physics e-Print archive (1995)
Mayers, D., Yao, A.: Quantum cryptography with imperfect apparatus. In: Proc. 39th IEEE FOCS, pp. 503–509 (1998)
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comp. 25(2), 23–32 (1996)
Shor, P.: Algorithms for quantum computation: Discrete logarithm and factoring. SIAM J. Comp. 26(5), 1484–1509 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Friedl, K., Magniez, F., Santha, M., Sen, P. (2003). Quantum Testers for Hidden Group Properties. In: Rovan, B., Vojtáš, P. (eds) Mathematical Foundations of Computer Science 2003. MFCS 2003. Lecture Notes in Computer Science, vol 2747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45138-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-540-45138-9_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40671-6
Online ISBN: 978-3-540-45138-9
eBook Packages: Springer Book Archive