Quantum Testers for Hidden Group Properties | SpringerLink
Skip to main content

Quantum Testers for Hidden Group Properties

  • Conference paper
Mathematical Foundations of Computer Science 2003 (MFCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2747))

Abstract

We construct efficient or query efficient quantum property testers for two existential group properties which have exponential query complexity both for their decision problem in the quantum and for their testing problem in the classical model of computing. These are periodicity in groups and the common coset range property of two functions having identical ranges within each coset of some normal subgroup.

Research partially supported by the EU 5th framework programs RESQ IST-2001-37559 and RAND-APX IST-1999-14036, and by CNRS/STIC 01N80/0502 and 01N80/0607 grants, by ACI Cryptologie CR/02 02 0040 grant of the French Research Ministry, and by OTKA T42559, T42706, and NWO-OTKA N34040 grants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  2. Buhrman, H., Fortnow, L., Newman, I., Röhrig, H.: Quantum property testing. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (2003)

    Google Scholar 

  3. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comput. System Sci. 47(3), 549–595 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. van Dam, W., Magniez, F., Mosca, M., Santha, M.: Self-testing of universal and fault-tolerant sets of quantum gates. In: Proc. 32nd ACM STOC, pp. 688–696 (2000)

    Google Scholar 

  5. Ettinger, M., Høyer, P.: On quantum algorithms for noncommutative hidden subgroups. Adv. in Appl. Math. 25(3), 239–251 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fischer, E.: The art of uninformed decisions: A primer to property testing, the computational complexity. In: The Computational Complexity Column, vol. 75, pp. 97–126. The Bulletin of the EATCS (2001)

    Google Scholar 

  7. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and orbit coset in quantum computing. In: Proc. 35th ACM STOC (2003)

    Google Scholar 

  8. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hales, L.: The Quantum Fourier Transform and Extensions of the Abelian Hidden Subgroup Problem. PhD thesis, University of California, Berkeley (2002)

    Google Scholar 

  10. Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. In: Proc. 41st IEEE FOCS, pp. 515–525 (2000)

    Google Scholar 

  11. Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem. Technical report no. 9511026, Quantum Physics e-Print archive (1995)

    Google Scholar 

  12. Mayers, D., Yao, A.: Quantum cryptography with imperfect apparatus. In: Proc. 39th IEEE FOCS, pp. 503–509 (1998)

    Google Scholar 

  13. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comp. 25(2), 23–32 (1996)

    MathSciNet  Google Scholar 

  15. Shor, P.: Algorithms for quantum computation: Discrete logarithm and factoring. SIAM J. Comp. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedl, K., Magniez, F., Santha, M., Sen, P. (2003). Quantum Testers for Hidden Group Properties. In: Rovan, B., Vojtáš, P. (eds) Mathematical Foundations of Computer Science 2003. MFCS 2003. Lecture Notes in Computer Science, vol 2747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45138-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45138-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40671-6

  • Online ISBN: 978-3-540-45138-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics