Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Andrecut M (1998) Logistic Map as a Random Number Generator. Int Journal of Modern Physics B 12 (9): 921-930
Ashenden JP (1997) The Designer ’s Guide to VHDL, 2nd edn. Morgan Kauf-mann Publishers
Cern ák J (1996) Digital generators of chaos. Phys Lett A 214: 151-160
Chen G, Dong X (1998) From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore
Chen, G (2003) Chaotification via Feedback: the Discrete Case. In: Chen G, Yu X (eds) Chaos Control: Theory and Applications. Springer, Berlin Heidelberg New York, pp 159-177
Collet P, Eckmann J-P (1980) Iterated Maps of the Interval as Dynamical Systems. Birkh äuser, Basel
Devaney RL (1989) An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-Wesley, Reading, MA
Fridrich J (1998) Symmetric Ciphers based on Two-dimensional Chaotic Maps. Int J Bifurcation and Chaos 8(6): pp 1259-1284
Golomb SW (1967) Shift Register Sequences. Holden-Day, San Francisco
Knuth DE (1998) The Art of Computer Programming, vol 2: Seminumerical Al- gorithms. Addison-Wesley
Kotulski Z, Szczepan˘ski J (2000) On Constructive Approach to Chaotic Pseudo-random Number Generator. In: Proc Regional Conf on Military Communication and Information Systems, CIS Solutions for an Enlarged NATO, pp 191-203
Li S, Mou X, Cai Y (2006) Chaotic Crypography in Digital World: State-of-the-art, Problems and Solutions. http://www.hooklee.com
Mao Y, Chen G (2005) Chaos-based Image Encryption. In: Bayro E (ed) Hand-book of Computational Geometry for Pattern Recognition, Computer Vision, Neurocomputing and Robotics, Springer, pp 231-265
Masuda N, Aihara K (2002) Cryptosystems with Discretized Chaotic Maps. IEEE Trans Circuits and Systems-I 49(1): 28-40
Matthews R (1989) On the Derivation of a ‘Chaotic’ Encryption Algorithm. Cryp- tologia, XIII (1): 29-41
National Institute of Standards and Technology (2001) Security Require- ments for Cryptographic Modules. FIPS PUB 140-2. http://csrc.nist.gov/ publications/fips/fips140- 2/fips1402.pdf
Pichler F, Scharinger J (1995) Ciphering by Bernoulli-shifts in Finite Abelian groups. In: Kaiser HK, Muller WB, Pilz GF (eds) Contributions to General Al-gebra 9: 249-256
Schmitz R (2001) Use of Chaotic Dynamical Systems in Cryptography. J Franklin Institute 338: 429-441
Schneier B (1995) Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York
Shannon CE (1949) Communication Theory of Secrecy System. Bell System Tech- nical Journal 28: 656-715
Stojanovski T, Kocarev L (2001) Chaos-based Random Number Generators — Part I: Analysis. IEEE Trans Circuits and Systems I: Fundamental Theory and Applications 48 (3): 281-288
Stojanovski T, Pihl J, Kocarev L (2001) Chaos-based Random Number Generators — Part II: Practical Realization. IEEE Trans Circuits and Systems I: Fundamental Theory and Applications 48 (3): 382-385
Szczepanski J, Kotulski Z (2000) Chaotic Pseudorandom Numbers Generators based on Chaotic Dynamical Systems. Open Sys And Information Dyn 7: 1-10
Walters P (1982) An Introduction to Ergodic Theory. Springer
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Mao, Y., Liu, W., Li, Z., Li, P., Halang, W.A. (2007). A Chip Performing Chaotic Stream Encryption. In: Krämer, B.J., Halang, W.A. (eds) Contributions to Ubiquitous Computing. Studies in Computational Intelligence, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44910-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-44910-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44909-6
Online ISBN: 978-3-540-44910-2
eBook Packages: EngineeringEngineering (R0)