Periodic Sequences with Maximal Linear Complexity and Almost Maximal k-Error Linear Complexity | SpringerLink
Skip to main content

Periodic Sequences with Maximal Linear Complexity and Almost Maximal k-Error Linear Complexity

  • Conference paper
Cryptography and Coding (Cryptography and Coding 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2898))

Included in the following conference series:

Abstract

C. Ding, W. Shan and G. Xiao conjectured a certain kind of trade-off between the linear complexity and the k-error linear complexity of periodic sequences over a finite field. This conjecture has recently been disproved by the first author, by showing that for infinitely many period lengths N and some values of k both complexities may take very large values (contradicting the above conjecture). Here we use some recent achievements of analytic number theory to extend the class of period lengths N and the number of admissible errors k for which this conjecture fails for rather large values of k. We also discuss the relevance of this result for stream ciphers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, R.C., Harman, G.: Shifted primes without large prime factors. Acta Arithmetica 83, 331–361 (1998)

    MATH  MathSciNet  Google Scholar 

  2. Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  3. Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers. In: Ding, C., Shan, W., Xiao, G. (eds.) The Stability Theory of Stream Ciphers. LNCS, vol. 561, Springer, Heidelberg (1991)

    Google Scholar 

  4. Friedlander, J.B., Pomerance, C., Shparlinski, I.E.: Period of the power generator and small values of Carmichael’s function. Math. Comp. 70, 1591–1605 (2001) (see also 71, 1803–1806 (2002))

    Article  MathSciNet  Google Scholar 

  5. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford Univ. Press, Oxford (1979)

    MATH  Google Scholar 

  6. Heath-Brown, D.R.: Artin’s conjecture for primitive roots. Quart. J. Math. 37, 27–38 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hooley, C.: On Artin’s conjecture. J. Reine Angew. Math. 225, 209–220 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kurlberg, P.: On the order of unimodular matrices modulo integers. Acta Arithmetica 110, 141–151 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kurlberg, P., Rudnick, Z.: On quantum ergodicity for linear maps of the torus. Comm. Math. Phys. 222, 201–227 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, S., Pomerance, C.: On generalizing Artin’s conjecture on primitive roots to composite moduli. J. Reine Angew. Math. 556, 205–224 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Meidl, W., Niederreiter, H.: Periodic sequences with maximal linear complexity and large k-error linear complexity. Appl. Algebra in Engin., Commun. and Computing (to appear)

    Google Scholar 

  12. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  13. Niederreiter, H.: Some computable complexity measures for binary sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 67–78. Springer, London (1999)

    Google Scholar 

  14. Niederreiter, H.: Periodic sequences with large k-error linear complexity. IEEE Trans. Inform. Theory 49, 501–505 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)

    MATH  Google Scholar 

  16. Rueppel, R.A.: Stream ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology: The Science ofInfor-mation Integrity, pp. 65–134. IEEE Press, New York (1992)

    Google Scholar 

  17. Stamp, M., Martin, C.F.: An algorithm for the fc-error linear complexity of binary sequences with period 2n. IEEE Trans. Inform. Theory 39, 1398–1401 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niederreiter, H., Shparlinski, I.E. (2003). Periodic Sequences with Maximal Linear Complexity and Almost Maximal k-Error Linear Complexity. In: Paterson, K.G. (eds) Cryptography and Coding. Cryptography and Coding 2003. Lecture Notes in Computer Science, vol 2898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40974-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40974-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20663-7

  • Online ISBN: 978-3-540-40974-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics