Abstract
Tissue analysis is essential for dealing with a number of problems in cancer research. This research tries to address the problem of identifying normal, dysplastic and cancerous colonic mucosa by means of Texture analysis techniques. A genetic algorithm is used to interpret the results of those operations. Image- processing operations and genetic algorithms are both tasks requiring vast processing power. PVM (Parallel Virtual Machine), a message-passing library for distributed programming has been selected for implementing a parallel classification system. To further enhance PVM functionality a C++ object-oriented “PVM wrapper” was constructed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hamilton, P.W., Bartels, P.H., Thompson, D., Anderson, N.H., Montironi, R.: Automated location of dysplastic fields in colorectal histology using image texture analysis. Journal of pathology 182, 68–75 (1997)
Esgiar, A.N., Naguib, R.N.G., Sharif, B.S., Bennett, M.K., Murray, A.: Microscopic image analysis for quantitative measurement and identification of normal and cancerous colonic mucosa. IEEE Transactions on information technology in biomedicine 2(3), 197–203 (1998)
Esgiar, A.N., Naguib, R.N.G., Bannett, M.K., Murray, A.: Automated extraction and identification of colon carcinoma. Analytical and quantitative cytology and histology 20(4), 297–301 (1998)
Lee, C.K., Hamdi, M.: Parallel Image-Processing Applications on a Network of Workstations. Parallel Computing 21, 137–160 (1994)
Lee, C., Wang, Y.F., Yang, T.: Global Optimisation for Mapping Parallel Image processing Tasks on Distributed Memory Machines. Journal of Parallel and Distributed Computing 45, 29–45 (1997)
Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM: Parallel Virtual Machine, A Users’ Guide and Tutorial for Networked Parallel Computing. MIT Press, Cambridge (1994)
Pitas, I.: Digital Image Processing Algorithms and Applications. Wiley-Interscience Publications, Hoboken (2000) ISBN 0-471-37739-2
Bovis, K., Singh, S.: Detection of Masses in Mammograms Using Texture Features. In: Proc. 15th International Conference on Pattern Recognition, vol. 2, pp. 267–270. IEEE Press, Los Alamitos (2000)
Goldberd, D.E.: Genetic Algorithms in Search Optimization & Machine Learning. Addison-Wesley Publishing Company Inc., Reading (1989) ISBN 0-201-15767-5
Bevilacqua, A., Campanini, R., Lanconelli, N.: A Distributed Genetic Algorithm for Parameters Optimization to Detect Microcalcifications in Digital Mamograms. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 278–287. Springer, Heidelberg (2001)
Downton, A., Crookes, D.: Parallel Architectures for Image Processing. Electronics & Communication Engineering Journal 10(3), 139–151 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Amin, S.A., Filippas, J., Naguib, R.N.G., Bennett, M.K. (2003). A Parallel System for Performing Colonic Tissue Classification by Means of a Genetic Algorithm. In: Dongarra, J., Laforenza, D., Orlando, S. (eds) Recent Advances in Parallel Virtual Machine and Message Passing Interface. EuroPVM/MPI 2003. Lecture Notes in Computer Science, vol 2840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39924-7_75
Download citation
DOI: https://doi.org/10.1007/978-3-540-39924-7_75
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20149-6
Online ISBN: 978-3-540-39924-7
eBook Packages: Springer Book Archive