Content Based Image Retrieval for Unsegmented Images | SpringerLink
Skip to main content

Content Based Image Retrieval for Unsegmented Images

  • Conference paper
AI*IA 2003: Advances in Artificial Intelligence (AI*IA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2829))

Included in the following conference series:

Abstract

We present a new method for image retrieval by shape similarity able to deal with real images with not uniform background and possible touching/occluding objects. First of all we perform a sketch-driven segmentation of the scene by means of a Deformation Tolerant version of the Generalized Hough Transform (DTGHT). Using the DTGHT we select in the image some candidate segments to be matched with the user sketch. The candidate segments are then matched with the sketch checking the consistency of the corresponding shapes. Finally, background segments are used in order to inhibit the recognition process when they cannot be perceptually separated from the object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anelli, M., Micarelli, A., Sangineto, E.: A deformation tolerant version of the generalized hough transform for image retrieval. In: 15th European Conference on Artificial Intelligence (ECAI 2002), Lyon, France (2002)

    Google Scholar 

  2. Anelli, M., Micarelli, A., Sangineto, E.: A new content based image retrieval method based on a sketch-driven interpretation of line segments. In: 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico (2003)

    Google Scholar 

  3. Ballard, D.H.: Generalizing the Hough Transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  4. Canny, J.: A computational approach to edge detection. IEEE Trans. on PAMI 8(6), 679–698 (1986)

    Google Scholar 

  5. Colombo, C., Del Bimbo, A.: Visible image retrieval. In: Bergman, L., Castelli, V. (eds.) Image Data Bases - Search and Retrieval of Digital Imagery,  ch. 2, pp. 11–33. Wiley, Chichester (2002)

    Google Scholar 

  6. Crimmins, T.: The geometric filter for speckle reduction. Applied optics 24(10) (1985)

    Google Scholar 

  7. Del Bimbo, A., Pala, P.: Visual image retrieval by elastic matching of user sketches. IEEE Trans. on PAMI 19(2), 121–132 (1997)

    Google Scholar 

  8. Flickner, M., et al.: Query by image and video content: the QBIC system. IEEE Computer 28(9), 23–32 (1995)

    Google Scholar 

  9. Jain, A.K., Zhong, Y., Lakshmanan, S.: Object matching using deformable templates. IEEE Trans. on PAMI 18, 267–278 (1996)

    Google Scholar 

  10. Koffka, K.: Principles of Gestalt Psychology. Harcourt, Brace and World, New York (1935)

    Google Scholar 

  11. Mokhtarian, F.: Silhouette-based isolated object recognition through curvature scale-space. IEEE Trans. on PAMI 17(5), 539–544 (1995)

    Google Scholar 

  12. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. on PAMI 22(12), 1349–1380 (2000)

    Google Scholar 

  13. Ullman, S.: High–level Vision. In: Object Recognition and Visual Cognition. A Bradford Book. The MIT Press, Cambridge (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anelli, M., Micarelli, A., Sangineto, E. (2003). Content Based Image Retrieval for Unsegmented Images. In: Cappelli, A., Turini, F. (eds) AI*IA 2003: Advances in Artificial Intelligence. AI*IA 2003. Lecture Notes in Computer Science(), vol 2829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39853-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39853-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20119-9

  • Online ISBN: 978-3-540-39853-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics