Visual Data Mining of Large Spatial Data Sets | SpringerLink
Skip to main content

Visual Data Mining of Large Spatial Data Sets

  • Conference paper
Databases in Networked Information Systems (DNIS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2822))

Included in the following conference series:

Abstract

Extraction of interesting knowledge from large spatial databases is an important task in the development of spatial database systems. Spatial data mining is the branch of data mining that deals with spatial (location) data. Analyzing the huge amount (usually tera-bytes) of spatial data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics etc. is, however, a very difficult task. Visual data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual data mining techniques, especially the area of analyzing spatial data. We provide some examples for effective visualizations of spatial data in important application areas such as consumer analysis, e-mail traffic analysis, and census demographics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. Advizor Solutions. Visual insight in3d (February 2003), http://www.advizorsolutions.com/

  2. Ankerst, M., Keim, D.A., Kriegel, H.-P.: Recursive pattern: A technique for visualizing very large amounts of data. In: Proc. Visualization 1995, Atlanta, GA, pp. 279–286 (1995)

    Google Scholar 

  3. Ankerst, M., Keim, D.A., Kriegel, H.-P.: Circle segments: A technique for visually exploring large multidimensional data sets. In: Visualization 1996, Hot Topic Session, San Francisco, CA (1996)

    Google Scholar 

  4. Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Transactions on Visualization and Computer Graphics 1(1), 16–28 (1995)

    Article  Google Scholar 

  5. Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  6. Chernoff, H.: The use of faces to represent points in k-dimensional space graphically. Journal Amer. Statistical Association 68, 361–368 (1973)

    Article  Google Scholar 

  7. Dent, B.D.: Cartography: Thematic Map Design, 4th edn.,  ch. 10. William C. Brown, Dubuque (1996)

    Google Scholar 

  8. Dougenik, J.A., Chrisman, N., Niemeyer, D.R.: An algorithm to construct continuous area cartograms. The Professional Geographer 37(1), 75–81 (1985)

    Article  Google Scholar 

  9. Eick, S.G., Wills, G.J.: Navigating large networks with hierarchies. In: Proc. IEEE Conf. Visualization, October 25-29, pp. 204–210 (1993)

    Google Scholar 

  10. ESRI. Arc view (February, 2003), http://www.esri.com/software/arcgis/arcview/index.html

  11. Geisler, G.: Making information more accessible: A survey of information, visualization applications and techniques (February 2003), http://www.ils.unc.edu/~geisg/info/infovis/paper.html

  12. Gusein-Zade, S., Tikunov, V.: A new technique for constructing continuous cartograms. Cartography and Geographic Information Systems 20(3), 66–85 (1993)

    Article  Google Scholar 

  13. Gusein-Zade, S., Tikunov, V.: Map transformations. Geography Review 9(1), 19–23 (1995)

    Google Scholar 

  14. Homepage, S.M.: Sgi mineset (February 2002), http://www.sgi.com/software/mineset.html

  15. Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multidimensional geometry. In: Proc. Visualization 1990, San Francisco, CA, pp. 361–370 (1990)

    Google Scholar 

  16. Johnson, B., Shneiderman, B.: Treemaps: A space-filling approach to the visualization of hierarchical information. In: Proc. Visualization 1991 Conf., pp. 284–291 (1991)

    Google Scholar 

  17. Keim, D.: Visual exploration of large databases. Communications of the ACM 44(8), 38–44 (2001)

    Article  Google Scholar 

  18. Keim, D., Koutsofios, E., North, S.C.: Visual exploration of large telecommunication data sets. In: Proc. Workshop on User Interfaces In Data Intensive Systems (Invited Talk), Edinburgh, UK, pp. 12–20 (1999)

    Google Scholar 

  19. Keim, D., Koutsofios, E., North, S.C.: Visual exploration of large telecommunication data sets. In: Proc. Workshop on User Interfaces In Data Intensive Systems (Invited Talk), Edinburgh, UK, pp. 12–20 (1999)

    Google Scholar 

  20. Keim, D., Ward, M.: Visual Data Mining Techniques, Book Chapter in: Intelligent Data Analysis, an Introduction by D. Hand and M. Berthold., 2nd edn. Springer, Heidelberg (2002)

    Google Scholar 

  21. Keim, D.A., Herrmann, A.: The gridfit algorithm: An efficient and effective approach to visualizing large amounts of spatial data. In: IEEE Visualization, Research Triangle Park, NC, pp. 181–188 (1998)

    Google Scholar 

  22. Keim, D.A., North, S.C., Panse, C.: Cartodraw: A fast algorithm for generating contiguous cartograms. Trans. on Visualization and Computer Graphics, Information Visualization Research Group, AT&T Laboratories, Florham Park (March 2003)

    Google Scholar 

  23. Keim, D.A., North, S.C., Panse, C., Schneidewind, J.: Efficient cartogram generation: A comparison. In: InfoVis 2002, IEEE Symposium on Information Visualization, Boston, Massachusetts, pp. 33–36 ( October 2002)

    Google Scholar 

  24. Keim, D.A., North, S.C., Panse, C., Schneidewind, J.: Visualpoints contra cartodraw. Palgrave Macmillan – Information Visualization (March 2003)

    Google Scholar 

  25. Kocmoud, C.J., House, D.H.: Continuous cartogram construction. In: Proceedings IEEE Visualization, pp. 197–204 (1998)

    Google Scholar 

  26. Kraak, M.-J., Ormeling, F., Kroak, M.-J.: Cartography: Visualization of Spatial Data. Addison-Wesley Pub Co., Reading (1996)

    Google Scholar 

  27. MacEachren, M.: How Maps Work: Presentation, Visualization, and Design. The Guilford Press, New York (1995)

    Google Scholar 

  28. NCSA. Visualization study of the nsfnet (February 2003), http://archive.ncsa.uiuc.edu/SCMS/DigLib/text/technology/Visualization-Study-NSFNET-Cox.html

  29. Pickett, R.M.: Visual Analyses of Texture in the Detection and Recognition of Objects. Academic Press, London (1970)

    Google Scholar 

  30. Pickett, R.M., Grinstein, G.G.: Iconographic displays for visualizing multidimensional data. In: Proc. IEEE Conf. on Systems, Man and Cybernetics, pp. 514–519. IEEE Press, Piscataway (1988)

    Chapter  Google Scholar 

  31. Raisz, E.: Principles of Cartography. McGraw-Hill, New York (1962)

    Google Scholar 

  32. Schumann, H., Müller, W.: Visualisierung: Grundlagen und allgemeine Methoden. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  33. Selvin, S., Merrill, D., Schulman, J., Sacks, S., Bedell, L., Wong, L.: Transformations of maps to investigate clusters of disease. Social Science and Medicine 26(2), 215–221 (1988)

    Article  Google Scholar 

  34. Shneiderman, B.: Tree visualization with treemaps: A 2D space-filling approach. ACM Transactions on Graphics 11(1), 92–99 (1992)

    Article  MATH  Google Scholar 

  35. Shneiderman, B.: The eye have it: A task by data type taxonomy for information visualizations. Visual Languages (1996)

    Google Scholar 

  36. Slocum, T.A.: Thematic cartography and visualization. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  37. Spence, B.: Information Visualization. Pearson Education Higher Education publishers, UK (2000)

    Google Scholar 

  38. Tobler, W.: Cartograms and cartosplines. In: Proceedings of the 1976 Workshop on Automated Cartography and Epidemiology, pp. 53–58 (1976)

    Google Scholar 

  39. Tobler, W.: Pseudo-cartograms. The American Cartographer 13(1), 40–43 (1986)

    Article  Google Scholar 

  40. Walter, J., Ritter, H.: On interactive visualization of high-dimensional data using the hyperbolic plane. In: Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 123–131 (2002)

    Google Scholar 

  41. Ward, M.O.: Xmdvtool: Integrating multiple methods for visualizing multivariate data. In: Proc. Visualization 1994, Washington, DC, pp. 326–336 (1994)

    Google Scholar 

  42. Ware, C.: Information Visualization: Perception for Design. Morgen Kaufman, San Francisco (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keim, D.A., Panse, C., Sips, M. (2003). Visual Data Mining of Large Spatial Data Sets. In: Bianchi-Berthouze, N. (eds) Databases in Networked Information Systems. DNIS 2003. Lecture Notes in Computer Science, vol 2822. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39845-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39845-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20111-3

  • Online ISBN: 978-3-540-39845-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics