Connection-Based Proof Construction in Non-commutative Logic | SpringerLink
Skip to main content

Connection-Based Proof Construction in Non-commutative Logic

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2850))

Abstract.

We propose a connection-based characterization of the multiplicative fragment of non-commutative logic (MNL), that is a conservative extension of both commutative (MLL) and non-commutative or cyclic (MCyLL) linear logic. It is based on a characterization for MLL together with the introduction of labels and constraints from a formula polarization process. We also study a similar characterization for the intuitionistic fragment of MNL. Finally, we consider the relationships between these results and proof nets construction in MNL based on labels and constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrusci, M., Ruet, P.: Non-commutative logic I: the multiplicative fragment. Annals of Pure and Applied Logic 101, 29–64 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreoli, J.M.: Focussing and Proof construction. Annals of Pure and Applied Logic 107, 131–163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andreoli, J.M.: Focusing proof-net construction as a middleware paradigm. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 501–516. Springer, Heidelberg (2002)

    Google Scholar 

  4. Faggian, C.: Proof construction and non-commutativity: a cluster calculus. In: International Conference on Principles and Practice of Declarative Programming, PPDP 2000. ACM Press, New York (2000)

    Google Scholar 

  5. Galmiche, D.: Connection Methods in Linear Logic and Proof nets Construction. Theoretical Computer Science 232(1-2), 231–272 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Galmiche, D., Méry, D.: Connection-based proof search in propositional BI logic. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 111–128. Springer, Heidelberg (2002)

    Google Scholar 

  7. Galmiche, D., Notin, J.M.: Proof-search and Proof nets in Mixed Linear Logic. Electronic Notes in Theoretical Computer Science 37 (2000)

    Google Scholar 

  8. Galmiche, D., Notin, J.M.: Calculi with Dependency Relations for Mixed Linear Logic. In: International Workshop on Logic and Complexity in Computer Science, LCCS 2001, Créteil, France, pp. 81–102 (2001)

    Google Scholar 

  9. Galmiche, D., Perrier, G.: A procedure for automatic proof nets construction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 42–53. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  10. Girard, J.Y.: Linear Logic: its Syntax and Semantics. In: Girard, J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 1–42. Cambridge University Press, Cambridge (1995)

    Chapter  Google Scholar 

  11. Girard, J.Y.: Proof nets: the parallel syntax for proof theory. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra. M. Dekker, New York (1995)

    Google Scholar 

  12. Gray, D., Hamilton, G., Power, J., Sinclair, D.: Specifying and verifying TCP/IP using Mixed Intuitionistic Linear Logic. Technical report, Dublin City Univ. (2001)

    Google Scholar 

  13. Kreitz, C., Mantel, H., Otten, J., Schmitt, S.: Connection-based proof construction in Linear Logic. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 207–221. Springer, Heidelberg (1997)

    Google Scholar 

  14. Mogbil, V.: Quadratic correctness criterion for non commutative logic. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 69–83. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Murawski, S., Ong, C.-H.L.: Dominator trees and fast verification of proof net. In: 15th IEEE Symposium on Logic in Computer Science, Santa Barbara, California (June 2000)

    Google Scholar 

  16. O’Hearn, P.W., Pym, D.: The Logic of Bunched Implications. Bulletin of Symbolic Logic 5(2), 215–244 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ruet, P.: Non-commutative logic II: sequent calculus and phase semantics. Math. Struct. in Comp. Science 10, 277–312 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ruet, P., Fages, F.: Concurrent constraint programming and non-commutative logic. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 406–423. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galmiche, D., Notin, J.M. (2003). Connection-Based Proof Construction in Non-commutative Logic. In: Vardi, M.Y., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2003. Lecture Notes in Computer Science(), vol 2850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39813-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39813-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20101-4

  • Online ISBN: 978-3-540-39813-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics