Abstract
With the rapid growth in size and number of available databases, it is necessary to explore and develop new methods for analysing the huge amounts of data. Mining information and interesting knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Analyzing the huge amount (usually tera-bytes) of data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics, however, a very difficult task. Visual Exploration and Visual Data Mining techniques apply human visual perception to the exploration of large data sets and have proven to be of high value in exploratory data analysis. Presenting data in an interactive, graphical form often opens new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual exploration techniques and present new results obtained from applying PixelBarCharts in sales analysis and internet usage management.
Portions of this article have previously appeared in [11,12,15].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ankerst, M., Keim, D.A., Kriegel, H.-P.: Recursive pattern: A technique for visualizing very large amounts of data. In: Proc. Visualization 1995, Atlanta, GA, pp. 279–286 (1995)
Ankerst, M., Keim, D.A., Kriegel, H.-P.: Circle segments: A technique for visually exploring large multidimensional data sets. In: Visualization 1996, Hot Topic, Session, San Francisco, CA (1996)
Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization. Morgan Kaufmann, San Francisco (1999)
Chernoff, H.: The use of faces to represent points in k-dimensional space graphically. Journal Amer. Statistical Association 68, 361–368 (1973)
Herman, G., Levkowitz, H.: Color scales for image data. Computer Graphics and Applications, 72–80 (1992)
Hilbert, D.: Über stetige Abbildungen einer Linie auf einem Flächenstück. Mathematische Annalen (78) (1891)
Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multidimensional geometry. In: Proc. Visualization 1990, San Francisco, CA, pp. 361–370 (1990)
Johnson, B., Shneiderman, B.: Treemaps: A space-filling approach to the visualization of hierarchical information. In: Proc. Visualization 1991 Conf., pp. 284–291 (1991)
Keim, D.: Designing pixel-oriented visualization techniques: Theory and applications. Transactions on Visualization and Computer Graphics 6(1), 59–78 (2000)
Keim, D.: Visual exploration of large databases. Communications of the ACM 44(8), 38–44 (2001)
Keim, D.A.: Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics (TVCG) 6(1), 59–78 (2000)
Keim, D.A., Hao, M., Dayal, U.: Hierarchical pixel bar charts. IEEE Transactions on Visualization and Computer Graphics (TVCG) 8(3), 255–269 (2002)
Keim, D.A., Hao, M.C., Ladisch, J., Hsu, M., Dayal, U.: Pixel bar charts: A new technique for visualizing large multi-attribute data sets without aggregation. In: Visualization 2001, Los Angeles, p. 113 (2001)
Keim, D.A., Kriegel, H.-P.: Issues in visualizing large databases. In: Proc. Conf. on Visual Database Systems (VDB 1995), Lausanne, Schweiz, März 1995, in: Visual Database Systems, pp. 203–214. Chapman & Hall Ltd., Boca Raton (1995)
Keim, D.A., Ward, M.: Visual Data Mining Techniques. In: Intelligent Data Analysis, an Introduction by D. Hand and M. Berthold, 2nd edn., Springer, Heidelberg (2002)
Morton, G.: A computer oriented geodetic data base and a new technique in file sequencing. IBM Ltd., Ottawa (1966)
Peano, G.: Sur une courbe qui remplit toute une aire plane. Mathematische Annalen (36) (1890)
Pickett, R.M.: Visual Analyses of Texture in the Detection and Recognition of Objects. Academic Press, New York (1970)
Pickett, R.M., Grinstein, G.G.: Iconographic displays for visualizing multidimensional data. In: Proc. IEEE Conf. on Systems, Man and Cybernetics, pp. 514–519. IEEE Press, Piscataway (1988)
Schumann, H., Müller, W.: Visualisierung: Grundlagen und allgemeine Methoden. Springer, Heidelberg (2000)
Shneiderman, B.: Tree visualization with treemaps: A 2D space-filling approach. ACM Transactions on Graphics 11(1), 92–99 (1992)
Shneiderman, B.: The eye have it: A task by data type taxonomy for information visualizations. Visual Languages (1996)
Spence, B.: Information Visualization. Pearson Education Higher Education publishers, London (2000)
Walter, J., Ritter, H.: On interactive visualization of high-dimensional data using the hyperbolic plane. In: Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 123–131 (2002)
Ward, M.O.: Xmdvtool: Integrating multiple methods for visualizing multivariate data. In: Proc. Visualization 1994, Washington, DC, pp. 326–336 (1994)
Ware, C.: Information Visualization: Perception for Design. Morgen Kaufman, San Francisco (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Keim, D.A., Panse, C., Schneidewind, J., Sips, M., Hao, M.C., Dayal, U. (2003). Pushing the Limit in Visual Data Exploration: Techniques and Applications. In: Günter, A., Kruse, R., Neumann, B. (eds) KI 2003: Advances in Artificial Intelligence. KI 2003. Lecture Notes in Computer Science(), vol 2821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39451-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-39451-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20059-8
Online ISBN: 978-3-540-39451-8
eBook Packages: Springer Book Archive