Pushing the Limit in Visual Data Exploration: Techniques and Applications | SpringerLink
Skip to main content

Pushing the Limit in Visual Data Exploration: Techniques and Applications

  • Conference paper
KI 2003: Advances in Artificial Intelligence (KI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2821))

Included in the following conference series:

Abstract

With the rapid growth in size and number of available databases, it is necessary to explore and develop new methods for analysing the huge amounts of data. Mining information and interesting knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Analyzing the huge amount (usually tera-bytes) of data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics, however, a very difficult task. Visual Exploration and Visual Data Mining techniques apply human visual perception to the exploration of large data sets and have proven to be of high value in exploratory data analysis. Presenting data in an interactive, graphical form often opens new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual exploration techniques and present new results obtained from applying PixelBarCharts in sales analysis and internet usage management.

Portions of this article have previously appeared in [11,12,15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ankerst, M., Keim, D.A., Kriegel, H.-P.: Recursive pattern: A technique for visualizing very large amounts of data. In: Proc. Visualization 1995, Atlanta, GA, pp. 279–286 (1995)

    Google Scholar 

  2. Ankerst, M., Keim, D.A., Kriegel, H.-P.: Circle segments: A technique for visually exploring large multidimensional data sets. In: Visualization 1996, Hot Topic, Session, San Francisco, CA (1996)

    Google Scholar 

  3. Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  4. Chernoff, H.: The use of faces to represent points in k-dimensional space graphically. Journal Amer. Statistical Association 68, 361–368 (1973)

    Article  Google Scholar 

  5. Herman, G., Levkowitz, H.: Color scales for image data. Computer Graphics and Applications, 72–80 (1992)

    Google Scholar 

  6. Hilbert, D.: Über stetige Abbildungen einer Linie auf einem Flächenstück. Mathematische Annalen (78) (1891)

    Google Scholar 

  7. Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multidimensional geometry. In: Proc. Visualization 1990, San Francisco, CA, pp. 361–370 (1990)

    Google Scholar 

  8. Johnson, B., Shneiderman, B.: Treemaps: A space-filling approach to the visualization of hierarchical information. In: Proc. Visualization 1991 Conf., pp. 284–291 (1991)

    Google Scholar 

  9. Keim, D.: Designing pixel-oriented visualization techniques: Theory and applications. Transactions on Visualization and Computer Graphics 6(1), 59–78 (2000)

    Article  Google Scholar 

  10. Keim, D.: Visual exploration of large databases. Communications of the ACM 44(8), 38–44 (2001)

    Article  Google Scholar 

  11. Keim, D.A.: Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics (TVCG) 6(1), 59–78 (2000)

    Article  Google Scholar 

  12. Keim, D.A., Hao, M., Dayal, U.: Hierarchical pixel bar charts. IEEE Transactions on Visualization and Computer Graphics (TVCG) 8(3), 255–269 (2002)

    Article  Google Scholar 

  13. Keim, D.A., Hao, M.C., Ladisch, J., Hsu, M., Dayal, U.: Pixel bar charts: A new technique for visualizing large multi-attribute data sets without aggregation. In: Visualization 2001, Los Angeles, p. 113 (2001)

    Google Scholar 

  14. Keim, D.A., Kriegel, H.-P.: Issues in visualizing large databases. In: Proc. Conf. on Visual Database Systems (VDB 1995), Lausanne, Schweiz, März 1995, in: Visual Database Systems, pp. 203–214. Chapman & Hall Ltd., Boca Raton (1995)

    Google Scholar 

  15. Keim, D.A., Ward, M.: Visual Data Mining Techniques. In: Intelligent Data Analysis, an Introduction by D. Hand and M. Berthold, 2nd edn., Springer, Heidelberg (2002)

    Google Scholar 

  16. Morton, G.: A computer oriented geodetic data base and a new technique in file sequencing. IBM Ltd., Ottawa (1966)

    Google Scholar 

  17. Peano, G.: Sur une courbe qui remplit toute une aire plane. Mathematische Annalen (36) (1890)

    Google Scholar 

  18. Pickett, R.M.: Visual Analyses of Texture in the Detection and Recognition of Objects. Academic Press, New York (1970)

    Google Scholar 

  19. Pickett, R.M., Grinstein, G.G.: Iconographic displays for visualizing multidimensional data. In: Proc. IEEE Conf. on Systems, Man and Cybernetics, pp. 514–519. IEEE Press, Piscataway (1988)

    Chapter  Google Scholar 

  20. Schumann, H., Müller, W.: Visualisierung: Grundlagen und allgemeine Methoden. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  21. Shneiderman, B.: Tree visualization with treemaps: A 2D space-filling approach. ACM Transactions on Graphics 11(1), 92–99 (1992)

    Article  MATH  Google Scholar 

  22. Shneiderman, B.: The eye have it: A task by data type taxonomy for information visualizations. Visual Languages (1996)

    Google Scholar 

  23. Spence, B.: Information Visualization. Pearson Education Higher Education publishers, London (2000)

    Google Scholar 

  24. Walter, J., Ritter, H.: On interactive visualization of high-dimensional data using the hyperbolic plane. In: Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 123–131 (2002)

    Google Scholar 

  25. Ward, M.O.: Xmdvtool: Integrating multiple methods for visualizing multivariate data. In: Proc. Visualization 1994, Washington, DC, pp. 326–336 (1994)

    Google Scholar 

  26. Ware, C.: Information Visualization: Perception for Design. Morgen Kaufman, San Francisco (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keim, D.A., Panse, C., Schneidewind, J., Sips, M., Hao, M.C., Dayal, U. (2003). Pushing the Limit in Visual Data Exploration: Techniques and Applications. In: Günter, A., Kruse, R., Neumann, B. (eds) KI 2003: Advances in Artificial Intelligence. KI 2003. Lecture Notes in Computer Science(), vol 2821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39451-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39451-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20059-8

  • Online ISBN: 978-3-540-39451-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics