Abstract
The need for accessing information through the web and other kind of distributed media makes it mandatory to convert almost every kind of document to a digital representation. However, there are many documents that were created long time ago and currently, in the best cases, only scanned images of them are available, when a digital transcription of their content is needed. For such reason, libraries across the world are looking for automatic OCR systems able to transcript that kind of documents. In this chapter we describe how Artificial Neural Networks can be useful in the design of an Optical Character Recognizer able to transcript handwritten and printed old documents. The properties of Neural Networks allow this OCR to have the ability to adapt to the styles of handwritten or antique fonts. Advances with two prototype parts of such OCR are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Universidad de las Américas, Puebla. Digitalización, Codificación y el Acceso Vía Internet de los Telegramas del ex presidente de México Porfirio Díaz. In: Colecciones Digitales Biblioteca (2002) http://biblio.udlap.mx/telegramas
Gomez-Gil, P.; Navarrete-García, J.: Analysis of a Neural-net based Algorithm for the Segmentation of Difficult-to-read Handwritten Letters.” In: WSEAS Transactions on Systems. Issue 4, Vol. 3 (2004) 1426 — 1429
García-García, A.: Digitalización y Divulgación Digital de Acervos Antiguos. In: Servicios Digitales. Bibliotecas de la Universidad de las Américas Puebla. http://ict.udlap.mx/projects/cudi/buap/(2004)
Haykin S.: Neural Networks: a Comprehensive Foundation. Macmillan College Publishing Company. New York. (1994)
Rumelhart, D.E. G. E. Hinton and R.J. Williams.: Learning Internal Representation by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition D.E. Rumelhart and J.L. McClelland, eds. Vol. 1, Chapter 8. Cambridge, MA: MIT Press. (1986)
Kohonen, T.: Self-Organized formation of topologically correct feature maps. Biological Cybernetics, 43, (1982) 59–69.
Nicchiotti G., Scagliola, C., Rimassa. S.: A Simple and Effective Cursive Word Segmentation Method. Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition, Amsterdam, (2000) 499–504.
Kussul Mikhailovich, E. and Kasaktina, L.M: Neural Network System for continuous handwritten Words Recognition. Book of Summaries of International Joint Conference on Neural Networks. Washington, D.C., (1999) 22.
Navarrete-García, J.: Mejora en el algoritmo de segmentación para el reconocimiento de caracteres de telegramas escritos por el Gral. Porfirio Díaz. Tesis para obtener el grado de Licenciatura. Departamento de Ingeniería en Sistemas Computacionales. Universidad de las Américas, Puebla. (2002).
De-los-Santos-Torres, G.: Reconocedor de Caracteres Manuscritos. Master thesis. Departamento de Ingeniería en Sistemas Computacionales. Universidad de las Américas, Puebla. (2003).
Gómez-Gil, Pilar, De los Santos-Torres, M., Ramírez-Cortés, Manuel: Feature Maps for Non-supervised Classification of Low-uniform Patterns of Handwritten Letters. Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes in Computer Science Vol. 3287 (2004) 203–207.
Tao, J.T. and Gonzalez, R.C. Pattern Recognition Principles. Addison-Wesley (1974)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this chapter
Cite this chapter
Gómez-Gil, P., De los Santos-Torres, G., Navarrete-García, J., Ramírez-Cortés, M. (2007). The Role of Neural Networks in the Interpretation of Antique Handwritten Documents. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Hybrid Intelligent Systems. Studies in Fuzziness and Soft Computing, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37421-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-37421-3_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37419-0
Online ISBN: 978-3-540-37421-3
eBook Packages: EngineeringEngineering (R0)