The Role of Neural Networks in the Interpretation of Antique Handwritten Documents | SpringerLink
Skip to main content

The Role of Neural Networks in the Interpretation of Antique Handwritten Documents

  • Chapter
Hybrid Intelligent Systems

Abstract

The need for accessing information through the web and other kind of distributed media makes it mandatory to convert almost every kind of document to a digital representation. However, there are many documents that were created long time ago and currently, in the best cases, only scanned images of them are available, when a digital transcription of their content is needed. For such reason, libraries across the world are looking for automatic OCR systems able to transcript that kind of documents. In this chapter we describe how Artificial Neural Networks can be useful in the design of an Optical Character Recognizer able to transcript handwritten and printed old documents. The properties of Neural Networks allow this OCR to have the ability to adapt to the styles of handwritten or antique fonts. Advances with two prototype parts of such OCR are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Universidad de las Américas, Puebla. Digitalización, Codificación y el Acceso Vía Internet de los Telegramas del ex presidente de México Porfirio Díaz. In: Colecciones Digitales Biblioteca (2002) http://biblio.udlap.mx/telegramas

  2. Gomez-Gil, P.; Navarrete-García, J.: Analysis of a Neural-net based Algorithm for the Segmentation of Difficult-to-read Handwritten Letters.” In: WSEAS Transactions on Systems. Issue 4, Vol. 3 (2004) 1426 — 1429

    Google Scholar 

  3. García-García, A.: Digitalización y Divulgación Digital de Acervos Antiguos. In: Servicios Digitales. Bibliotecas de la Universidad de las Américas Puebla. http://ict.udlap.mx/projects/cudi/buap/(2004)

  4. Haykin S.: Neural Networks: a Comprehensive Foundation. Macmillan College Publishing Company. New York. (1994)

    MATH  Google Scholar 

  5. Rumelhart, D.E. G. E. Hinton and R.J. Williams.: Learning Internal Representation by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition D.E. Rumelhart and J.L. McClelland, eds. Vol. 1, Chapter 8. Cambridge, MA: MIT Press. (1986)

    Google Scholar 

  6. Kohonen, T.: Self-Organized formation of topologically correct feature maps. Biological Cybernetics, 43, (1982) 59–69.

    Article  MATH  Google Scholar 

  7. Nicchiotti G., Scagliola, C., Rimassa. S.: A Simple and Effective Cursive Word Segmentation Method. Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition, Amsterdam, (2000) 499–504.

    Google Scholar 

  8. Kussul Mikhailovich, E. and Kasaktina, L.M: Neural Network System for continuous handwritten Words Recognition. Book of Summaries of International Joint Conference on Neural Networks. Washington, D.C., (1999) 22.

    Google Scholar 

  9. Navarrete-García, J.: Mejora en el algoritmo de segmentación para el reconocimiento de caracteres de telegramas escritos por el Gral. Porfirio Díaz. Tesis para obtener el grado de Licenciatura. Departamento de Ingeniería en Sistemas Computacionales. Universidad de las Américas, Puebla. (2002).

    Google Scholar 

  10. De-los-Santos-Torres, G.: Reconocedor de Caracteres Manuscritos. Master thesis. Departamento de Ingeniería en Sistemas Computacionales. Universidad de las Américas, Puebla. (2003).

    Google Scholar 

  11. Gómez-Gil, Pilar, De los Santos-Torres, M., Ramírez-Cortés, Manuel: Feature Maps for Non-supervised Classification of Low-uniform Patterns of Handwritten Letters. Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes in Computer Science Vol. 3287 (2004) 203–207.

    Google Scholar 

  12. Tao, J.T. and Gonzalez, R.C. Pattern Recognition Principles. Addison-Wesley (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Gómez-Gil, P., De los Santos-Torres, G., Navarrete-García, J., Ramírez-Cortés, M. (2007). The Role of Neural Networks in the Interpretation of Antique Handwritten Documents. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Hybrid Intelligent Systems. Studies in Fuzziness and Soft Computing, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37421-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37421-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37419-0

  • Online ISBN: 978-3-540-37421-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics