Hybrid Mesh Generation for Viscous Flow Simulation | SpringerLink
Skip to main content

Hybrid Mesh Generation for Viscous Flow Simulation

  • Conference paper
Proceedings of the 15th International Meshing Roundtable

Abstract

This paper presents a robust and automated approach to generate unstructured hybrid grids comprised of prismatic and tetrahedral elements for viscous flow computations. The hybrid mesh generation starts from a triangulated surface mesh. The prismatic elements are extruded based on the weak solutions of the Eikonal equation to generate anisotropic elements at boundaries, and finally the isotropic tetrahedral grids are generated to fill the rest of the domain. The presented hybrid meshing algorithm was validated using a ball valve model under both steady and unsteady conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. Y. L.Wang, F. Guibault, R. Camarero, and K. -F. Tchon, “A parametrization transporting surface offset construction method based on the eikonal equation,” in 17th AIAA CFD Conf., June 2005.

    Google Scholar 

  2. 2. H. K. Zhao, “A fast sweeping method for eikonal equations,” Mathematics of Computation, vol. 74, no. 250, pp. 603–627, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  3. 3. J. Hoffman, Numerical Methods for Engineers and Scientists. McGraw-Hill Inc., 1992.

    Google Scholar 

  4. 4. H. Borouchaki, Hecht, F., E. Saltel and P. L. George, “Reasonably Eficient Delaunay Based Mesh Generator in 3 Dimensions,“ in Proceedings 4th International Meshing Roundtable, Sandia National Laboratories, pp. 3–14, 1995

    Google Scholar 

  5. 5. Y. L. Wang, F. Guibault, and R. Camarero, “Automatic near-body domain decomposition using the eikonal equation,“ in Proceedings of the 14th International Meshing Roundtable, Sandia National Laboratory, Sept. 2005.

    Google Scholar 

  6. 6. Y. L. Wang, F. Guibault, and R. Camarero (2006) Int. J. Numer. Meth. Engng, Submitted.

    Google Scholar 

  7. 7. P. L. George, F. Hecht, and E. Saltel, “Automatic Mesh Generator with Specified Boundary,“ in Computer Methods in Applied Mechanics and Engineering, North-Holland, Vol 92, pp. 269–288, 1991

    Article  MATH  MathSciNet  Google Scholar 

  8. 8. F. Guibault, Un mailleur hybride structuré/non structuré en trois dimensions. PhD thesis, école Polytechnique de Montréal, 1998.

    Google Scholar 

  9. 9. S. Pirzadeh, “Unstructured viscous grid generation by advancing-layers method,” in AIAA 11th Applied Aerodynamics Conference, no. AIAA-93-3453, (Monterey, CA), pp. 420–434, Aug. August 9-11, 1993.

    Google Scholar 

  10. 10. J. Suillivan and J. Zhang, “Adaptive mesh generation using a normal offsetting technique,” Finite Elements in Analysis and Design, vol. 25, pp. 275–295, 1997.

    Article  Google Scholar 

  11. 11. J. Glimm, J. Grove, X. Li, and D. Tan, “Robust computational algorithms for dynamic interface tracking in three dimensions,” SIAM J. Sci. Comp., vol. 21, no. 6, pp. 2240–2256, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  12. 12. R. Blomgren, “B-spline curves, boeing document, class notes, b-7150-bb-wp-2811d-4412,” 1981.

    Google Scholar 

  13. 13. W. Tiller and E. Hanson, “offsets of two-dimensional profiles,” IEEE Computer Graphics and Applications, vol. 4, no. 9, pp. 36–46, 1984.

    Article  Google Scholar 

  14. 14. S. Coquillart, “Computing offsets of b-spline curves,” Comp.-Aided Design, vol. 19, no. 6, pp. 305–309, 1987.

    Article  MATH  Google Scholar 

  15. 15. A. Kulczycka and L. Nachman, “Qualitative and quantitative comparisons of b-spline offset surface approximation methods,” Comp.-Aided Design, vol. 34, pp. 19–26, Jan. 2002.

    Article  Google Scholar 

  16. 16. L. A. Piegl and W. Tiller, “Computing offsets of nurbs curves and surfaces,” Comp.-Aided Design, vol. 31, pp. 147–156, Feb. 1999.

    Article  MATH  Google Scholar 

  17. 17. Y. F. Sun, A. Y. C. M. Nee, and K. S. Lee, “Modifying free-formed nurbs curves and surfaces for offsetting without local self-intersection,” Comp.-Aided Design, vol. 36, no. 12, pp. 1161–1169, 2004.

    Article  Google Scholar 

  18. 18. R. T. Farouki, “The approximation of non-degenerate offset surfaces,” Comp.-Aided Geom. Design, vol. 3, no. 1, pp. 15–43, 1986.

    Article  MATH  Google Scholar 

  19. 19. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations,” J. Comp. Phys., vol. 79, pp. 12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  20. 20. J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 4, pp. 1591–1595, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  21. 21. J. A. Sethian, Level set methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, 1999.

    Google Scholar 

  22. 22. J. A. Sethian, “Fast marching methods,” SIAM Review, vol. 41, no. 2, pp. 199–235, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  23. 23. T. D. Blacker and M. B. Stephenson, “Paving: A new approach to Automated Quardrilateral Mesh Generation,” SIAM Journal on Numerical Analysis, vol. 32, pp. 811–847, 1991.

    MATH  Google Scholar 

  24. 24. R. J. Cass and S. E. Benzley and R. J. Meyers and T. D. Blacker, “Generalized 3-D Paving: An Automated Quadrilateral Surface Mesh Generation Algorithm,” SIAM Journal on Numerical Analysis, vol. 39, no. 9, pp. 1475–1489, 1998.

    Google Scholar 

  25. 25. “TGrid 3.5 User's Manual,” Fluent Inc., April, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Wang, Y., Murgie, S. (2006). Hybrid Mesh Generation for Viscous Flow Simulation. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics