Abstract
A novel external memory implementation based on the use of partially complete sequences of solution components from above-average quality individuals over a number of previous iterations is introduced. Elements of such variable-size partial permutation sequences are taken from randomly selected positions of parental individuals and stored in an external memory called the partial permutation memory. Partial permutation sequences are associated with lifetimes together with their parent solutions’ fitness values that are used in retrieving and updating the contents of the memory. When a solution is to be constructed, a partial permutation sequence is retrieved from the memory based on its age and associated fitness value, and the remaining components of the partial solution is completed with an ant colony optimization algorithm. Resulting solutions are also used to update some elements within the memory. The implemented algorithm is used for the solution of a difficult combinatorial optimization problem, namely the quadratic assignment problem, for which significant performance achievements are provided in terms of convergence speed and solution quality.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for distributed discrete optimization. Artificial Life 5, 137–172 (1999)
Dorigo, M., Caro, G.D.: The ant colony optimization metaheuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New ideas in optimization, pp. 11–32. McGraw-Hill, London (1999)
Eggermont, J., Lenaerts, T.: Non-stationary function optimization using evolutionary algorithms with a case-based memory, Technical report, Leiden University Advanced Computer Science (LIACS) Technical Report 2001-11
Ramsey, C.L., Grefenstette, J.J.: Case-based initialization of GAs. In: Forest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA, pp. 84–91 (1993)
Louis, S., Li, G.: Augmenting genetic algorithms with memory to solve traveling salesman problem. In: Proceedings of the Joint Conference on Information Sciences, Duke University, pp. 108–111 (1997)
Simoes, A., Costa, E.: Using genetic algorithms to deal with dynamic environments: comparative study of several approaches based on promoting diversity. In: Langton, W.B., et al. (eds.) Proceedings of the genetic and evolutionary computation conference GECCO 2002, p. 698. Morgan Kaufmann, New York (2002)
Simoes, A., Costa, E.: Using biological inspiration to deal with dynamic environments. In: Proceedings of the seventh international conference on soft computing MENDEL 2001, Czech Republic (2001)
Acan, A., Tekol, Y.: Chromosome reuse in genetic algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 695–705. Springer, Heidelberg (2003)
Lewis, J., Hart, E., Ritchie, G.: A comparison of dominance mechanisms and simple mutation on non-stationary problems. In: Eiben, A.E., Back, T., Schoenauer, M., Schwefel, H. (eds.) Parallel Problem Solving from Nature- PPSN V, Berlin, pp. 139–148 (1998)
Montgomery, J., Randall, M.: The accumulated experience ant colony for the traveling salesman problem. International Journal of Computational Intelligence and Applications 3(2), 189–198 (2003)
Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 72–81. Springer, Heidelberg (2002)
Guntsch, M., Middendorf, M.: Applying population based ACO for dynamic optimization problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)
Acan, A.: An External Memory Implementation in Ant Colony Optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 73–82. Springer, Heidelberg (2004)
Stützle, T., Fernandes, S.: New benchmark instances for the QAP and the experimental analysis of algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 199–209. Springer, Heidelberg (2004)
Stützle, T., Dorigo, M.: ACO Algorithms for the Quadratic Assignment Problem. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 33–50. McGraw-Hill, New York (1999)
Stützle, T.: MAX-MIN ant system for the quadratic assignment problem. Technical Report AIDA-97-04, Darmstadt University of Technology, Computer Science Dept., Intellectics Group (1997)
Stützle, T.: Iterated local search for the quadratic assignment problem. Technical Report AIDA-99-03, Darmstadt University of Technology, Computer Science Dept., Intellectics Group (1999)
Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing 11(4), 358–369 (1999)
Maniezzo, V., Colorni, A., Dorigo, M.: The ant system applied to the quadratic assignment problem. Technical Report IRIDIA/94-28, Universite Libre de Bruxelles (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Acan, A. (2005). An External Partial Permutations Memory for Ant Colony Optimization. In: Raidl, G.R., Gottlieb, J. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2005. Lecture Notes in Computer Science, vol 3448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31996-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-31996-2_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25337-2
Online ISBN: 978-3-540-31996-2
eBook Packages: Computer ScienceComputer Science (R0)