Kolmogorov-Loveland Randomness and Stochasticity | SpringerLink
Skip to main content

Kolmogorov-Loveland Randomness and Stochasticity

  • Conference paper
STACS 2005 (STACS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3404))

Included in the following conference series:

Abstract

One of the major open problems in the field of effective randomness is whether Martin-Löf randomness is the same as Kolmogorov-Loveland (or KL) randomness, where an infinite binary sequence is KL-random if there is no computable non-monotonic betting strategy that succeeds on the sequence in the sense of having an unbounded gain in the limit while betting successively on bits of the sequence. Our first main result states that every KL-random sequence has arbitrarily dense, easily extractable subsequences that are Martin-Löf random. A key lemma in the proof of this result is that for every effective split of a KL-random sequence at least one of the halves is Martin-Löf random. We show that this splitting property does not characterize KL-randomness by constructing a sequence that is not even computably random such that every effective split yields subsequences that are 2-random, hence are in particular Martin-Löf random.

A sequence X is KL-stochastic if there is no computable non-monotonic selection rule that selects from X an infinite, biased sequence. Our second main result asserts that every KL-stochastic sequence has constructive dimension 1, or equivalently, a sequence cannot be KL-stochastic if it has infinitely many prefixes that can be compressed by a factor of α< 1 with respect to prefix-free Kolmogorov complexity. This improves on a result by Muchnik, who has shown a similar implication where the premise requires that such compressible prefixes can be found effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambos-Spies, K., Kučera, A.: Randomness in computability theory. In: Computability theory and its applications, Boulder, CO. Contemp. Math., vol. 257, pp. 1–14. Amer. Math. Soc., Providence (2000)

    Google Scholar 

  2. Buhrman, H., van Melkebeek, D., Regan, K.W., Sivakumar, D., Strauss, M.: A generalization of resource-bounded measure, with application to the BPP vs. EXP problem. SIAM J. Comput. 30, 576–601 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cai, J.Y., Hartmanis, J.: On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. J. Comput. System Sci. 49, 605–619 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Downey, R., Hirschfeldt, D., Nies, A., Terwijn, S.: Calibrating randomness. Bulletin of Symbolic Logic (to appear)

    Google Scholar 

  5. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications. Graduate Texts in Computer Science. Springer, New York (1997)

    MATH  Google Scholar 

  6. Lutz, J.H.: Gales and the constructive dimension of individual sequences. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 902–913. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  Google Scholar 

  8. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inform. Process. Lett. 84, 1–3 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Merkle, W.: The Kolmogorov-Loveland stochastic sequences are not closed under selecting subsequences. J. Symbolic Logic 68, 1362–1376 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Merkle, W., Miller, J., Nies, A., Reimann, J., Stephan, F.: Kolmogorov-Loveland randomness and stochasticity. Annals of Pure and Applied Logic (to appear)

    Google Scholar 

  11. Muchnik, A.A., Semenov, A.L., Uspensky, V.A.: Mathematical metaphysics of randomness. Theoret. Comput. Sci. 207, 263–317 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Odifreddi, P.: Classical recursion theory. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  13. Reimann, J.: Computability and fractal dimension. Doctoral Dissertation, Universität Heidelberg, Heidelberg, Germany (2004)

    Google Scholar 

  14. Ryabko, B.Y.: Coding of combinatorial sources and Hausdorff dimension. Sov. Math. Dokl. 30, 219–222 (1984)

    MATH  Google Scholar 

  15. Ryabko, B.Y.: Noiseless coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity. Probl. Information Transmission 22, 170–179 (1986)

    MATH  MathSciNet  Google Scholar 

  16. Ryabko, B.Y.: Private communication (April 2003)

    Google Scholar 

  17. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inform. and Comput. 103, 159–194 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Staiger, L.: A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of Computing Systems 31, 215–229 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Uspensky, V.A., Semenov, A.L., Shen, A.K.: Can an (individual) sequence of zeros and ones be random? Russian Math. Surveys 45, 121–189 (1990)

    Article  MathSciNet  Google Scholar 

  20. Van Lambalgen, M.: Random sequences. Doctoral Dissertation, Universiteit van Amsterdam, Amsterdam, Netherlands (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Merkle, W., Miller, J., Nies, A., Reimann, J., Stephan, F. (2005). Kolmogorov-Loveland Randomness and Stochasticity. In: Diekert, V., Durand, B. (eds) STACS 2005. STACS 2005. Lecture Notes in Computer Science, vol 3404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31856-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24998-6

  • Online ISBN: 978-3-540-31856-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics