Abstract
In the beginning, one of the main fields of application of graph transformation was biology, and more specifically morphology. Later, however, it was like if the biological applications had been left aside by the graph transformation community, just to be moved back into the mainstream these very last years with a new interest in molecular biology. In this paper, we review several fields of application of graph grammars in molecular biology, including: the modelling of higher-dimensional structures of biomolecules, the description of biochemical reactions, and the study of biochemical pathways.
This work has been partially supported by the Spanish CICYT, project MAVERISH (TIC2001-2476-C03-01) and by the Spanish DGES and the EU program FEDER, project BFM2003-00771 ALBIOM.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, N., Mamitsuka, H.: Predicting protein secondary structure using stochastic tree grammars. Machine learning 29, 275–301 (1997)
Beck, M., Benkö, G., Eble, C.F., Müller, S., Stadler, P.: Graph grammars as models for the evolution of developmental pathways. In: Schaub, H., Detje, F., Brüggemann, U. (eds.) The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems, pp. 8–15. IOS Press, Amsterdam (2004)
Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. Journal of Chemical Information and Computer Sciences 43, 1085–1093 (2003)
Benkö, G., Flamm, C., Stadler, P.F.: Multi-phase artificial chemistry. In: Schaub, H., Detje, F., Brüggemann, U. (eds.) The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems, pp. 16–22. IOS Press, Amsterdam (2004)
Benkö, G., Flamm, C., Stadler, P.F.: Generic properties of chemical networks: Artificial chemistry based on graph rewriting. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 10–19. Springer, Heidelberg (2003)
Bower, J.M., Bolouri, H.: Computational modeling of genetic and biochemical networks. MIT Press, Cambridge (2001)
Brendel, V., Busse, H.G.: Genome structure described by formal languages. Nucleic Acid Research 12, 2561–2568 (1984)
Cardelli, L.: Brane calculi. In: Proc. Workshop Concurrent Methods in Molecular Biology. Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam (2004) (to appear)
Cayley, A.: On the mathematical theory of isomers. Philosophical Magazine 47, 444–446 (1874)
Chan, H.S., Dill, K.A.: Compact polymers. Macromolecules 22, 4559–4573 (1989)
Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation. Part I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1, pp. 163–246. World Scientific, Singapore (1997)
Culik II, K., Lindenmayer, A.: Parallel rewriting on graphs and multidimensional development. Int. Journ. of General Systems 3, 53–66 (1976)
Curti, M., Degano, P., Baldari, C.: Causal π-calculus for biochemical modelling. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 21–33. Springer, Heidelberg (2003)
Danos, V., Krivine, J.: Formal molecular biology done in CCS. In: Proc. Workshop Concurrent Methods in Molecular Biology. Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam (2004) (to appear)
Danos, V., Laneve, C.: Graphs for core molecular biology. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 34–46. Springer, Heidelberg (2003)
Danos, V., Laneve, C.: Core formal molecular biology. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 302–318. Springer, Heidelberg (2003)
Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)
Deville, Y., Gilbert, D., van Helden, J., Wodak, S.J.: An overview of data models for the analysis of biochemical pathways. Briefings in Bioinformatics 4, 246–259 (2003)
Fringuelli, F., Taticchi, A.: The Diels-Alder Reaction: Selected Practical Methods. John Wiley & Sons, Chichester (2002)
Dittrich, P., Ziegler, J., Banzhaff, W.: Artificial chemistries—a review. Artificial life 7, 225–275 (2001)
Durbin, R., Krogh., A., Mitchison, G., Eddy, S.: Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge Univ. Press, Cambridge (1998)
Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rosenberg, G.: Computation in Living Cells: Gene Assembly in Ciliates. Natural computing series. Springer, Berlin (2004)
Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation. part II: Single pushout approach and comparison with double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1, pp. 247–312. World Scientific, Singapore (1997)
Ehrig, H., Mahr, B.: Fundamentals of algebraic specification I: Equations and initial semantics. Springer, Heidelberg (1985)
Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: Symbolic analisys of biological signalling. In: Pacific symposium on Biocomputing 2001, pp. 400–412. World Scientific, Singapore (2001)
Fan, L.T., Bertók, B., Friedler, F.: A graph-theoretic method to identify candidate mechanisms for deriving the rate law of a catalytic reaction. Computers & Chemistry 26, 265–292 (2002)
Félix, L., Rosselló, F., Valiente, G.: Artificial chemistries and metabolic pathways. In: Messeguer, X., Valiente, G. (eds.) Proc. 5th Annual Spanish Bioinformatics Conference, Barcelona, Technical University of Catalonia, pp. 56–59 (2004)
Flamm, C., Fontana, W., Hofacker, I., Schuster, P.: Kinetic folding of RNA at elementary step resolution. RNA 6, 325–338 (2000)
Fontana, W.: Algorithmic chemistry. In: Artificial Life II. Santa Fe Institute Studies in the Sciences of Complexity, vol. 47, pp. 159–210. Addison-Wesley, Reading (1992)
Fujita, S.: Description of organic reactions based on imaginary transition structures. Part 1-5. Journal of Chemical Information and Computer Sciences 26, 205–242 (1986)
Fujita, S.: Computer-Oriented Representation of Organic Reactions. Yoshioka Shoten, Kyoto (2001)
Fujita, S.: Description of organic reactions based on imaginary transition structures. Part 6-9. Journal of Chemical Information and Computer Sciences 27, 99–120 (1987)
Gernert, D.: Graph grammars as an analytical tool in physics and biology. Biosystems 43, 179–187 (1997)
Goss, P., Peccoud, J.: Quantitative modelling of stochastic systems in molecular biology using stochastic Petri nets. Proc. Nat. Acad. Sc. 95, 6750–6755 (1998)
Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 210–225. Springer, Heidelberg (2004)
Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, L., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125, 167–188 (1994)
Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27–30 (2000)
Kister, A., Magarshak, Y., Malinsky, J.: The theoretical analysis of the process of RNA molecule self-assembly. BioSystems 30, 31–48 (1993)
Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)
Lesk, A.M.: Systematic representation of protein folding patterns. J. Mol. Graph. 13, 159–164 (1995)
Mayoh, B.: On patterns and graphs (1995) (preprint)
Mayoh, B.: Multidimensional Lindenmayer organisms. In: L-systems. LNCS, vol. 15, pp. 302–326. Springer, Heidelberg (1974)
McAdams, H., Arkin, A.: It’s a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics 15, 65–69 (1999)
McCaskill, J., Niemann, U.: Graph replacement chemistry for DNA processing. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 103–116. Springer, Heidelberg (2001)
Michal, G. (ed.): Biological Pathways: An Atlas of Biochemistry and Molecular Biology. John Wiley & Sons, New York (1999)
Polanski, O.: Graphs in quantum chemistry. MATCH 1, 183–195 (1975)
Priami, C. (ed.): Proc. 1st Int. Workshop Computational Methods in Systems Biology. LNCS, vol. 2602. Springer, Heidelberg (2003)
Przytycka, T., Srinivasan, T., Rose, G.: Recursive domains in proteins. Protein Science 11, 409–417 (2002)
Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π- calculus process algebra. In: Pacific symposium on Biocomputing 2001, pp. 459–470. World Scientific, Singapore (2001)
Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)
Reidys, C., Stadler, P.F.: Bio-molecular shapes and algebraic structures. Computers & Chemistry 20, 85–94 (1996)
Richardson, J.: β-sheet topology and the relatedness of proteins. Nature 268, 495–500 (1977)
Rivas, E., Eddy, S.R.: The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics 16, 334–340 (2000)
Rosselló, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chemical graph transformation. In: Proc. 2nd Int. Workshop Graph-Based Tools. Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam (2004) (to appear)
Rosselló, F., Valiente, G.: Analysis of metabolic pathways by graph transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 70–82. Springer, Heidelberg (2004)
Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjolander, K., Underwood, R., Haussler, D.: Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research 22, 5112–5128 (1994)
Schultz, J., Milpetz, F., Bork, P., Ponting, C.: SMART, a simple molecular architecture research tool. Proc. Nat. Acad. Sc. 95, 5857–5864 (1998)
Searls, D.: The computational linguistics of biological sequences. In: Artificial Intelligence and Molecular Biology, pp. 47–120. AAAI Press, Menlo Park (1993)
Searls, D.: Formal language and biological macromolecules. In: Mathematical Support for Molecular Biology. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 47, pp. 128–141. AMS (1999)
Searls, D.: The language of genes. Nature 420, 211–217 (2002)
Seo, H., Lee, D.Y., Park, S., Fan, L.T., Shafie, S., Bertók, B., Friedler, F.: Graphtheoretical identification of pathways for biochemical reactions. Biotechnology Letters 23, 1551–1557 (2001)
Speroni, P.: Artificial chemistries. Bull. EATCS 76, 128–141 (2002)
Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of self reproduction. Physica D 171, 197–210 (2002)
Waterman, M.S., Smith, T.F.: RNA secondary structure: a complete mathematical analysis. Math. Biosci. 42, 257–266 (1978)
Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences 28, 31–36 (1988)
Weininger, D., Weininger, A., Weininger, J.L.: SMILES. 2. Algorithm for generation of unique SMILES notation. Journal of Chemical Information and Computer Sciences 29, 97–101 (1989)
Weininger, D.: SMILES. 3. DEPICT. Graphical depiction of chemical structures. Journal of Chemical Information and Computer Sciences 30, 237–243 (1990)
Westhead, D., Slidel, T., Flores, T., Thornton, J.: Protein structural topology: automated analysis and diagrammatic representation. Protein Science 8, 897–904 (1999)
Yadav, M.K., Kelley, B.P., Silverman, S.M.: The potential of a chemical graph transformation system. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 83–95. Springer, Heidelberg (2004)
Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. Silico Biology 3, 323–345 (2003)
Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math. Biol. 46, 591–621 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Rosselló, F., Valiente, G. (2005). Graph Transformation in Molecular Biology. In: Kreowski, HJ., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds) Formal Methods in Software and Systems Modeling. Lecture Notes in Computer Science, vol 3393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31847-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-31847-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24936-8
Online ISBN: 978-3-540-31847-7
eBook Packages: Computer ScienceComputer Science (R0)