On the Complexity of Universal Programs | SpringerLink
Skip to main content

On the Complexity of Universal Programs

  • Conference paper
Machines, Computations, and Universality (MCU 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3354))

Included in the following conference series:

Abstract

This paper provides a framework enabling to define and determine the complexity of various universal programs U for various machines. The approach consists of first defining the complexity as the average number of instructions to be executed by U, when simulating the execution of one instruction of a program P with input x.

To obtain a complexity that does not depend on P or x, we then introduce the concept of an introspection coefficient expressing the average number of instructions executed by U, for simulating the execution of one of its own instructions. We show how to obtain this coefficient by computing a square matrix whose elements are numbers of executed instructions when running selected parts of U on selected data. The coefficient then becomes the greatest eigenvalue of the matrix.

We illustrate the approach using two examples of particularly efficient universal programs: one for a three-symbol Turing Machine (blank symbol not included) with an introspection coefficient of 3 672.98, the other for an indirect addressing arithmetic machine with an introspection coefficient of 26.27.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    Google Scholar 

  2. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967) (also MIT Press, fifth printing, (2002))

    MATH  Google Scholar 

  3. Rogozin, Y.: Small universal Turing machines. Theoretical Computer Science 168(2) (November1996)

    Google Scholar 

  4. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Colmerauer, A. (2005). On the Complexity of Universal Programs. In: Margenstern, M. (eds) Machines, Computations, and Universality. MCU 2004. Lecture Notes in Computer Science, vol 3354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31834-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31834-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25261-0

  • Online ISBN: 978-3-540-31834-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics