Recognizing HHD-free and Welsh-Powell Opposition Graphs | SpringerLink
Skip to main content

Recognizing HHD-free and Welsh-Powell Opposition Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

In this paper, we consider the recognition problem on two classes of perfectly orderable graphs, namely, the HHD-free and the Welsh-Powell opposition graphs (or WPO-graphs). In particular, we prove properties of the chordal completion of a graph and show that a modified version of the classic linear-time algorithm for testing for a perfect elimination ordering can be efficiently used to determine in O( min {n m α(n), nm + n 2 log n}) time whether a given graph G on n vertices and m edges contains a house or a hole; this leads to an O( min {n m α(n), n m + n 2 logn})-time and O(n+m)-space algorithm for recognizing HHD-free graphs. We also show that determining whether the complement \(\skew3\overline{G}\) of the graph G contains a house or a hole can be efficiently resolved in O(nm) time using O(n 2) space; this in turn leads to an O(nm)-time and O(n 2)-space algorithm for recognizing WPO-graphs. The previously best algorithms for recognizing HHD-free and WPO-graphs required O(n 3) time and O(n 2) space.

Research partially funded by the European Union and the Hellenic Ministry of Education through EPEAEK II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brandstadt, A., Le, V.B., Spinrad, J.P.: Spinrad, Graph classes: A survey. SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  2. Chvátal, V.: Perfectly ordered graphs. Annals of Discrete Math. 21, 63–65 (1984)

    Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Inc., Cambridge (2001)

    Google Scholar 

  4. Eschen, E.M., Johnson, J.L., Spinrad, J.P., Sritharan, R.: Recognition of some perfectly orderable graph classes. Discrete Appl. Math. 128, 355–373 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, Inc., London (1980)

    MATH  Google Scholar 

  6. Hayward, R.: Meyniel weakly triangulated graphs I: co-perfect orderability. Discrete Appl. Math. 73, 199–210 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hoàng, C.T.: On the complexity of recognizing a class of perfectly orderable graphs. Discrete Appl. Math. 66, 219–226 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hoàng, C.T., Khouzam, N.: On brittle graphs. J. Graph Theory 12, 391–404 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hoàng, C.T., Sritharan, R.: Finding houses and holes in graphs. Theoret. Comput. Sci. 259, 233–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jamison, B., Olariu, S.: On the semi-perfect elimination. Adv. Appl. Math. 9, 364–376 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. McConnell, R.M., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation. In: Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA 1994), pp. 536–545 (1994)

    Google Scholar 

  12. Middendorf, M., Pfeiffer, F.: On the complexity of recognizing perfectly orderable graphs. Discrete Math. 80, 327–333 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nikolopoulos, S.D., Palios, L.: Recognizing HHD-free and Welsh-Powell opposition graphs, Technical Report TR-16-04, Dept. of Computer Science, University of Ioannina (2004)

    Google Scholar 

  14. Olariu, S.: All variations on perfectly orderable graphs. J. Combin. Theory Ser. B 45, 150–159 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Olariu, S.: Weak bipolarizable graphs. Discrete Math. 74, 159–171 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Olariu, S., Randall, J.: Welsh-Powell opposition graphs. Inform. Process. Lett. 31, 43–46 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Welsh, D.J.A., Powell, M.B.: An upper bound on the chromatic number of a graph and its applications to timetabling problems. Comput. J. 10, 85–87 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikolopoulos, S.D., Palios, L. (2004). Recognizing HHD-free and Welsh-Powell Opposition Graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics