Fully-Dynamic Recognition Algorithm and Certificate for Directed Cographs | SpringerLink
Skip to main content

Fully-Dynamic Recognition Algorithm and Certificate for Directed Cographs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

  • 1473 Accesses

Abstract

This paper presents an optimal fully-dynamic recognition algorithm for directed cographs. Given the modular decomposition tree of a directed cograph G, the algorithm supports arc and vertex modification (insertion or deletion) in \(\mathcal{O}(d)\) time where d is the number of arcs involved in the operation. Moreover, if the modified graph remains a directed cograph, the modular tree decomposition is updated; otherwise, a certificate is returned within the same complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bretscher, A., Corneil, D.G., Habib, M., Paul, C.: A simple linear time lexBFS cograph recognition algorithm. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 119–130. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Capelle, C., Habib, M.: Graph decompositions and factorizing permutations. In: Fifth Israel Symposium on the Theory of Computing Systems (ISTCS 1997), pp. 132–143. IEEE Computer Society Press, Los Alamitos (1997)

    Chapter  Google Scholar 

  3. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs. Discrete Applied Mathematics 3(1), 163–174 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear time recognition algorithm for cographs. SIAM Journal on Computing 14(4), 926–934 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ehrenfeucht, A., Rozenberg, G.: Primitivity is hereditary for 2-structures. Theoretical Computer Science 70(3), 343–359 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fouquet, J.-L., Giakoumakis, V., Vanherpe, J.-M.: Bipartite graphs totally decomposable by canonical decomposition. International Journal of Foundation of Computer Science 10(4), 513–533 (1999)

    Article  MathSciNet  Google Scholar 

  7. Giakoumakis, V., Vanherpe, J.-M.: Linear time recognition and optimizations for weak-bisplit graphs, bi-cographs and bipartite p6-free graphs. International Journal of Foundation of Computer Science 14(1), 107–136 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM Journal on Computing 31(1), 289–305 (2002)

    Article  MathSciNet  Google Scholar 

  9. Ibarra, L.: Fully dynamic algorithms for chordal graphs. In: 10th ACM-SIAM Annual Symposium on Discrete Algorithm (SODA 2003), pp. 923–924 (1999)

    Google Scholar 

  10. Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithm for recognition of interval graphs and permutation graphs. In: 14th ACM-SIAM Annual Symposium on Discrete Algorithm (SODA 2003), pp. 153–167 (2003)

    Google Scholar 

  11. Lawler, E.L.: Graphical algorithm and their complexity. Mathematical center tracts 81, 3–32 (1976)

    Google Scholar 

  12. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Mathematics 19, 257–356 (1984)

    Google Scholar 

  13. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and representation of cographs. Discrete Applied Mathematics 136(2-3), 329–340 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM Journal on Computing 11, 298–313 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crespelle, C., Paul, C. (2004). Fully-Dynamic Recognition Algorithm and Certificate for Directed Cographs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics