Abstract
An undirected graph is a treelike comparability graph if it admits a transitive orientation such that its transitive reduction is a tree. We show that treelike comparability graphs are distance hereditary. Utilizing this property, we give a linear time recognition algorithm. We then characterize permutation graphs that are treelike. Finally, we consider the Partitioning into Bounded Cliques problem on special subgraphs of treelike permutation graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atkinson, M.D.: On computing the number of linear extensions of a tree. Order 7, 23–25 (1990)
Bodlaender, H.L., Jansen, K.: On the complexity of scheduling incompatible jobs with unit-times. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 291–300. Springer, Heidelberg (1993)
Corneil, D.G., Olariu, S., Stewart, L.: A linear time algorithm to compute a dominating path in an AT-free graph. Information Processing Letters 54(5), 253–257 (1995)
Corneil, D.G., Olariu, S., Stewart, L.: Astroidal triple-free graphs. SIAM Journal on Discrete Mathematics 10(3), 399–430 (1997)
Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canadian Journal of Mathematics 32, 734–765 (1980)
Cunningham, W.H., Edmonds, J.: Decomposition of directed graphs. SIAM Journal on Algebraic and Discrete Methods 3, 214–228 (1982)
Dahlhaus, E.: Efficient parallel and linear time sequential split decomposition. In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 171–180. Springer, Heidelberg (1994)
Di Stefano, G., Koci, M.L.: A graph theoretical approach to the shunting problem. In: Gerards, B. (ed.) Proceedings of the Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS 2003). Electronic Notes in Theoretical Computer Science, vol. 92 (2004)
Golumbic, M.C.: Trivially perfect graphs. Discrete Mathematics 24, 105–107 (1978)
Golumbic, M.C., Monma, C.L., Trotter Jr., W.T.: Tolerance graphs. Discrete Applied Mathematics 9, 157–170 (1984)
Hammer, P.L., Maffray, F.: Completely seperable graphs. Discrete Applied Mathematics 27, 85–99 (1990)
Jansen, K.: The mutual exclusion scheduling problem for permutation and comparability graphs. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 287–297. Springer, Heidelberg (1998)
Kirckpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. In: Proceedings of the 10th Annual ACM Symposium on the Theory of Computing (STOC 1978), pp. 240–245. ACM, The Association for Computing Machinery (1978)
Lonc, Z.: On complexity of some chain and antichain partition problems. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 97–104. Springer, Heidelberg (1992)
Wolk, E.S.: A note on “The comparability graph of a tree”. Proceedings of the American Mathematical Society 16, 17–20 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cornelsen, S., Di Stefano, G. (2004). Treelike Comparability Graphs: Characterization, Recognition, and Applications. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-30559-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24132-4
Online ISBN: 978-3-540-30559-0
eBook Packages: Computer ScienceComputer Science (R0)