Core Stability of Minimum Coloring Games | SpringerLink
Skip to main content

Core Stability of Minimum Coloring Games

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

In cooperative game theory, a characterization of games with stable cores is known as one of the most notorious open problems. We study this problem for a special case of the minimum coloring games, introduced by Deng, Ibaraki & Nagamochi, which arises from a cost allocation problem when the players are involved in conflict. In this paper, we show that the minimum coloring game on a perfect graph has a stable core if and only if every vertex of the graph belongs to a maximum clique. We also consider the problem on the core largeness, the extendability, and the exactness of minimum coloring games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biswas, A.K., Parthasarathy, T., Potters, J.A.M., Voorneveld, M.: Large cores and exactness. Games and Economic Behavior 28, 1–12 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chudnovsky, M., Seymour, P.: Recognizing Berge graphs (Submitted)

    Google Scholar 

  3. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Applied Mathematics 9, 27–39 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cornuéjols, G., Liu, X., Vus̆ković, K.: A polynomial algorithm for recognizing perfect graphs. In: Proc. 44th FOCS, pp. 20–27 (2003)

    Google Scholar 

  5. Curiel, I.J.: Cooperative Game Theory and Applications: Cooperative Games Arising from Combinatorial Optimization Problems. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  6. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24, 751–766 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deng, X., Ibaraki, T., Nagamochi, H., Zang, W.: Totally balanced combinatorial optimization games. Math. Program. 87, 441–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19, 257–266 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farber, M.: Independent domination in chordal graphs. Oper. Res. Lett. 1, 134–138 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)

    MATH  MathSciNet  Google Scholar 

  11. Gillies, D.B.: Some theorems on n-person games. Ph.D. Thesis. Princeton University, Princeton (1953)

    Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  13. Kikuta, K., Shapley, L.S.: Core stability in n-person games. (1986) (Manuscript)

    Google Scholar 

  14. Kratsch, D.: Algorithms. In: Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.) Domination in Graphs (Advanced Topics), pp. 191–231. Marcel Dekker Inc., New York (1998)

    Google Scholar 

  15. Kratsch, D., Stewart, L.: Domination on cocomparability graphs. SIAM J. Discrete Math. 6, 400–417 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 253–267 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  17. Okamoto, Y.: Submodularity of some classes of the combinatorial optimization games. Math. Methods Oper. Res. 58, 131–139 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Okamoto, Y.: Fair cost allocations under conflicts — A game-theoretic point of view —. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 686–695. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Schmeidler, D.: Cores of exact games I. J. Math. Anal. Appl. 40, 214–225 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shapley, L.S.: Cores of convex games. Internat. J. Game Theory 1, 11–26 (1971); Errata is in the same volume, pp. 199 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sharkey, W.W.: Cooperative games with large cores. Internat. J. Game Theory 11, 175–182 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Solymosi, T., Raghavan, T.E.S.: Assignment games with stable cores. Internat. J. Game Theory 30, 177–185 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. van Gellekom, J.R.G., Potters, J.A.M., Reijnierse, J.H.: Prosperity properties of TU-games. Internat. J. Game Theory 28, 211–227 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton University Press, Princeton (1944)

    Google Scholar 

  25. Zverovich, I.E.: Independent domination on 2P 3-free perfect graphs. DIMACS Technical Report 2003-22 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bietenhader, T., Okamoto, Y. (2004). Core Stability of Minimum Coloring Games. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics