Abstract
It has long been known that the number of spanning trees in circulant graphs with fixed jumps and n nodes satisfies a recurrence relation in n. The proof of this fact was algebraic (relating the products of eigenvalues of the graphs’ adjacency matrices) and not combinatorial. In this paper we derive a straightforward combinatorial proof of this fact. Instead of trying to decompose a large circulant graph into smaller ones, our technique is to instead decompose a large circulant graph into different step graph cases and then construct a recurrence relation on the step graphs. We then generalize this technique to show that the numbers of Hamiltonian Cycles, Eulerian Cycles and Eulerian Orientations in circulant graphs also satisfy recurrence relations.
Partially supported by HK CERG grants HKUST6162/00E, HKUST6082/01E and HKUST6206/02E. A full version of this paper is available at [6].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baron, G., Prodinger, H., Tichy, R.F., Boesch, F.T., Wang, J.F.: The Number of Spanning Trees in the Square of a Cycle. Fibonacci Quarterly 23.3, 258–264 (1985)
Bedrosian, S.: The Fibonacci Numbers via Trigonometric Expressions. J. Franklin Inst. 295, 175–177 (1973)
Boesch, F.T., Wang, J.F.: A Conjecture on the Number of Spanning Trees in the Square of a Cycle. In: Notes from New York Graph Theory Day V, p. 16. New York Academy Sciences, New York (1982)
Boesch, F.T., Prodinger, H.: Spanning Tree Formulas and Chebyshev Polynomials. Graphs and Combinatorics 2, 191–200 (1986)
Colbourn, C.J.: The combinatorics of network reliability. Oxford University Press, New York (1987)
Golin, M.J., Leung, Y.C.: Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters Technical Report HKUST-TCSC-2004-??, Available at http://www.cs.ust.hk/tcsc/RR/
Golin, M.J., Zhang, Y.P.: Further applications of Chebyshev polynomials in the derivation of spanning tree formulas for circulant graphs. In: Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, pp. 541–552. Birkhauser-Verlag, Basel (2002)
Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)
Kleitman, D.J., Golden, B.: Counting Trees in a Certain Class of Graphs. Amer. Math. Monthly 82, 40–44 (1975)
Yong, X., Talip, A.: The Numbers of Spanning Trees of the Cubic Cycle \(c^3_N\) and the Quadruple Cycle \(c^4_N\). Discrete Math. 169, 293–298 (1997)
Yong, X., Zhang, F.J.: “A simple proof for the complexity of square cycle \(c^2_P\). J. Xinjiang Univ. 11, 12–16 (1994)
Zhang, Y.P., Yong, X., Golin, M.J.: The number of spanning trees in circulant graphs. Discrete Math. 223, 337–350 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Golin, M.J., Leung, Y.C. (2004). Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-30559-0_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24132-4
Online ISBN: 978-3-540-30559-0
eBook Packages: Computer ScienceComputer Science (R0)