Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters | SpringerLink
Skip to main content

Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

  • 1487 Accesses

Abstract

It has long been known that the number of spanning trees in circulant graphs with fixed jumps and n nodes satisfies a recurrence relation in n. The proof of this fact was algebraic (relating the products of eigenvalues of the graphs’ adjacency matrices) and not combinatorial. In this paper we derive a straightforward combinatorial proof of this fact. Instead of trying to decompose a large circulant graph into smaller ones, our technique is to instead decompose a large circulant graph into different step graph cases and then construct a recurrence relation on the step graphs. We then generalize this technique to show that the numbers of Hamiltonian Cycles, Eulerian Cycles and Eulerian Orientations in circulant graphs also satisfy recurrence relations.

Partially supported by HK CERG grants HKUST6162/00E, HKUST6082/01E and HKUST6206/02E. A full version of this paper is available at [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baron, G., Prodinger, H., Tichy, R.F., Boesch, F.T., Wang, J.F.: The Number of Spanning Trees in the Square of a Cycle. Fibonacci Quarterly 23.3, 258–264 (1985)

    MathSciNet  Google Scholar 

  2. Bedrosian, S.: The Fibonacci Numbers via Trigonometric Expressions. J. Franklin Inst. 295, 175–177 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boesch, F.T., Wang, J.F.: A Conjecture on the Number of Spanning Trees in the Square of a Cycle. In: Notes from New York Graph Theory Day V, p. 16. New York Academy Sciences, New York (1982)

    Google Scholar 

  4. Boesch, F.T., Prodinger, H.: Spanning Tree Formulas and Chebyshev Polynomials. Graphs and Combinatorics 2, 191–200 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Colbourn, C.J.: The combinatorics of network reliability. Oxford University Press, New York (1987)

    Google Scholar 

  6. Golin, M.J., Leung, Y.C.: Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters Technical Report HKUST-TCSC-2004-??, Available at http://www.cs.ust.hk/tcsc/RR/

  7. Golin, M.J., Zhang, Y.P.: Further applications of Chebyshev polynomials in the derivation of spanning tree formulas for circulant graphs. In: Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, pp. 541–552. Birkhauser-Verlag, Basel (2002)

    Google Scholar 

  8. Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  9. Kleitman, D.J., Golden, B.: Counting Trees in a Certain Class of Graphs. Amer. Math. Monthly 82, 40–44 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yong, X., Talip, A.: The Numbers of Spanning Trees of the Cubic Cycle \(c^3_N\) and the Quadruple Cycle \(c^4_N\). Discrete Math. 169, 293–298 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yong, X., Zhang, F.J.: “A simple proof for the complexity of square cycle \(c^2_P\). J. Xinjiang Univ. 11, 12–16 (1994)

    MATH  MathSciNet  Google Scholar 

  12. Zhang, Y.P., Yong, X., Golin, M.J.: The number of spanning trees in circulant graphs. Discrete Math. 223, 337–350 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golin, M.J., Leung, Y.C. (2004). Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics