Efficient Computation of the Lovász Theta Function for a Class of Circulant Graphs | SpringerLink
Skip to main content

Efficient Computation of the Lovász Theta Function for a Class of Circulant Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

We consider the problem of estimating the Shannon capacity of a circulant graph C n,J of degree four with n vertices and chord length J, 2 ≤ Jn, by computing its Lovász theta function θ(C n,J ). We present an algorithm that takes O(J) operations if J is an odd number, and O(n/J) operations if J is even. On the considered class of graphs our algorithm strongly outperforms the known algorithms for theta function computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shannon, C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inform. Theory IT-2, 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  2. Haemers, W.: An upper bound for the Shannon capacity of a graph. Colloq. Math. Soc. János Bolyai 25, 267–272 (1978)

    MathSciNet  Google Scholar 

  3. Rosenfeld, M.: On a problem of Shannon. Proc. Amer. Mat. Soc. 18, 315–319 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. on Inf. Theory 25, 1–7 (1979)

    Article  MATH  Google Scholar 

  5. Brimkov, V.E., Codenotti, B., Crespi, V., Leoncini, M.: On the lovász number of certain circulant graphs. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 291–305. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Minc, H.: Permanental compounds and permanents of (0,1) circulants. Linear Algebra and its Applications 86, 11–46 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: A survey. J. of Parallel and Distributed Computing 24, 2–10 (1995)

    Article  Google Scholar 

  8. Leighton, F.T.: Introduction to parallel algorithms and architecture: Arrays, trees, hypercubes. M. Kaufmann, San Francisco (1996)

    Google Scholar 

  9. Liton, B., Mans, B.: On isomorphic chordal rings. In: Proc. of the Seventh Australian Workshop on Combinatorial Algorithms (AWOCA 1996), Univ. of Sydney, BDCSTR- 508, 108-111 (1996)

    Google Scholar 

  10. Mans, B.: Optimal distributed algorithms in unlabel tori and chordal rings. J. of Parallel and Distributed Computing 46(1), 80–90 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bouknight, W.J., Denenberg, S.A., McIntyre, D.E., Randall, J.M., Samel, A.H., Slotnick, D.L.: The Illiac IV System. Proc. IEEE 60(4), 369–378 (1972)

    Article  Google Scholar 

  12. Wilkov, R.S.: Analysis and design of reliable computer networks. IEEE Trans. On Communications 20, 660–678 (1972)

    Article  Google Scholar 

  13. Wong, C.K., Coppersmith, D.: A combinatorial problem related to multimodule memory organization. Journal of the ACM 21(3), 392–402 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Adám, A.: Research problem 2-10. J. Combinatorial Theory 393, 1109–1124 (1991)

    Google Scholar 

  15. Beivide, R., Herrada, E., Balcázar, J.L., Arruabarrena, A.: Optimal distance networks of low degree for parallel computers. IEEE Trans. on Computers C-30(10), 1109–1124 (1991)

    Article  Google Scholar 

  16. Yang, Y., Funashashi, A., Jouraku, A., Nishi, H., Amano, H., Sueyoshi, T.: Recursive diagonal torus: an interconnection network for massively parallel computers. IEEE Trans. on Parallel and Distributed Systems 12(7), 701–715 (2001)

    Article  Google Scholar 

  17. Huber, K.: Codes over tori. IEEE Trans. on Information Theory 43(2), 740–744 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rosenfeld, A., Klette, R.: Digital straightness. Electronic Notes in Theoretical Computer Science vol. 46 (2001), http://www.elsevier.nl/locate/entcs,volume46.html

  19. Dorst, L., Duin, R.P.W.: Spirograph theory: a framework for calculations on digitized straight lines. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 632–639 (1984)

    Article  MATH  Google Scholar 

  20. Brimkov, V.E., Barneva, R.P., Klette, R., Straight, J.: Lovász theta-function of a class of graphs representing digital lines. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 285–295. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Alizadeh, F., et al.: SDPPACK user’s guide, http://www.cs.nyu.edu/faculty/overton/sdppack,sdppack.html

  22. Berge, C.: Graphs, North-Holland Mathematical Library (1985)

    Google Scholar 

  23. Knuth, D.E.: The sandwich theorem. Electronic J. Combinatorics 1, 1–48 (1994)

    Google Scholar 

  24. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optimization 5(1), 13–51 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Alon, N.: On the capacity of digraphs. European J. Combinatorics 19, 1–5 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Alon, N., Orlitsky, A.: Repeated communication and Ramsey graphs. IEEE Trans. on Inf. Theory 33, 1276–1289 (1995)

    Article  MathSciNet  Google Scholar 

  27. Ashley, J.J., Siegel, P.H.: A note on the Shannon Capacity of run-length-limited codes. IEEE Trans. on Inf. Theory IT-33, 601–605 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Farber, M.: An analogue of the Shannon capacity of a graph. SIAM J. on Alg. And Disc. Methods 7, 67–72 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Feige, U.: Randomized graph products, chromatic numbers, and the Lovász θ- function. In: Proc of the 27th STOC, pp. 635–640 (1995)

    Google Scholar 

  30. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. of ACM 31(1), 114–127 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brimkov, V.E., Barneva, R.P., Klette, R., Straight, J. (2004). Efficient Computation of the Lovász Theta Function for a Class of Circulant Graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics