Planar Graphs, via Well-Orderly Maps and Trees | SpringerLink
Skip to main content

Planar Graphs, via Well-Orderly Maps and Trees

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

The family of well-orderly maps is a family of planar maps with the property that every connected planar graph has at least one plane embedding which is a well-orderly map. We show that the number of well-orderly maps with n nodes is at most 2αn + O(logn), where α ≈ 4.91. A direct consequence of this is a new upper bound on the number p(n) of unlabeled planar graphs with n nodes, log2 p(n) ≤ 4.91n.

The result is then used to show that asymptotically almost all (labeled or unlabeled), (connected or not) planar graphs with n nodes have between 1.85n and 2.44n edges.

Finally we obtain as an outcome of our combinatorial analysis an explicit linear time encoding algorithm for unlabeled planar graphs using, in the worst-case, a rate of 4.91 bits per node and of 2.82 bits per edge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liskovets, V.A., Walsh, T.R.: Ten steps to counting planar graphs. Congressus Numerantium 60, 269–277 (1987)

    MathSciNet  Google Scholar 

  2. Denise, A., Vasconcellos, M., Welsh, D.J.: The random planar graph. Congressus Numerantium 113, 61–79 (1996)

    MATH  MathSciNet  Google Scholar 

  3. McDiarmid, C.J., Steger, A., Welsh, D.J.: Random planar graphs (2001) (Preprint)

    Google Scholar 

  4. Giménez, O., Noy, M.: Estimating the growth constant of labelled planar graphs. In: 3rd Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities. Birkhäuser, Basel (2004)

    Google Scholar 

  5. Bonichon, N., Gavoille, C., Hanusse, N.: An information-theoretic upper bound of planar graphs using triangulation. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 499–510. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Bender, E.A., Gao, Z., Wormald, N.C.: The number of labeled 2-connected planar graphs. The Electronic Journal of Combinatorics 9, R43 (2002)

    Google Scholar 

  7. Wright, E.M.: Graphs on unlabelled nodes with a given number of edges. Acta Math. 126, 1–9 (1971)

    Article  MATH  Google Scholar 

  8. Khodakovsky, A., Alliez, P., Desbrun, M., Schröder, P.: Near-optimal connectivity encoding of 2-manifold polygon meshes. Graphical Models (2002) (to appear in a special issue )

    Google Scholar 

  9. King, D., Rossignac, J.: Guaranteed 3.67V bit encoding of planar triangle graphs. In: 11th Canadian Conference on Computational Geometry, pp. 146–149 (1999)

    Google Scholar 

  10. Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5, 47–61 (1999)

    Article  Google Scholar 

  11. Frederickson, G.N., Janardan, R.: Efficient message routing in planar networks. SIAM Journal on Computing 18, 843–857 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gavoille, C., Hanusse, N.: Compact routing tables for graphs of bounded genus. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 351–360. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Lu, H.-I.: Improved compact routing tables for planar networks via orderly spanning trees. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 57–66. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. In: 42th Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  15. Bodirsky, M., Gröpl, C., Kang, M.: Generating labeled planar graphs uniformly at random. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1095–1107. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Gerke, S., McDiarmid, C.J.: On the number of edges in random planar graphs. Combinatorics, Probability & Computing (2002) (to appear)

    Google Scholar 

  17. Turán, G.: Succinct representations of graphs. Discrete Applied Mathematics 8, 289–294 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Keeler, K., Westbrook, J.: Short encodings of planar graphs and maps. Discrete Applied Mathematics 58, 239–252 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static trees and planar graphs. In: 38th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 118–126. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  20. Yannakakis, M.: Embedding planar graphs in four pages. Journal of Computer and System Sciences 38, 36–67 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications to graph encoding and graph drawing. In: 12th Symposium on Discrete Algorithms (SODA), ACM-SIAM, pp. 506–515 (2001)

    Google Scholar 

  22. Chuang, R.C.-N., Garg, A., He, X., Kao, M.-Y., Lu, H.-I.: Compact encodings of planar graphs via canonical orderings and multiple parentheses. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 118–129. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Schnyder, W.: Embedding planar graphs on the grid. In: 1st Symposium on Discrete Algorithms (SODA), ACM-SIAM, pp. 138–148 (1990)

    Google Scholar 

  24. Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1080–1094. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Goulden, I., Jackson, D.: Combinatorial Enumeration. John Wiley & Sons, Chichester (1983)

    MATH  Google Scholar 

  26. Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 1043–1053. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Zhang, H., He, X.: Compact visibility representation and straight-line grid embedding of plane graphs. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 493–504. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  28. Bonichon, N., Le Saëc, B., Mosbah, M.: Optimal area algorithm for planar polyline drawings. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 35–46. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., Schaeffer, G. (2004). Planar Graphs, via Well-Orderly Maps and Trees. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics