Abstract
The family of well-orderly maps is a family of planar maps with the property that every connected planar graph has at least one plane embedding which is a well-orderly map. We show that the number of well-orderly maps with n nodes is at most 2αn + O(logn), where α ≈ 4.91. A direct consequence of this is a new upper bound on the number p(n) of unlabeled planar graphs with n nodes, log2 p(n) ≤ 4.91n.
The result is then used to show that asymptotically almost all (labeled or unlabeled), (connected or not) planar graphs with n nodes have between 1.85n and 2.44n edges.
Finally we obtain as an outcome of our combinatorial analysis an explicit linear time encoding algorithm for unlabeled planar graphs using, in the worst-case, a rate of 4.91 bits per node and of 2.82 bits per edge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liskovets, V.A., Walsh, T.R.: Ten steps to counting planar graphs. Congressus Numerantium 60, 269–277 (1987)
Denise, A., Vasconcellos, M., Welsh, D.J.: The random planar graph. Congressus Numerantium 113, 61–79 (1996)
McDiarmid, C.J., Steger, A., Welsh, D.J.: Random planar graphs (2001) (Preprint)
Giménez, O., Noy, M.: Estimating the growth constant of labelled planar graphs. In: 3rd Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities. Birkhäuser, Basel (2004)
Bonichon, N., Gavoille, C., Hanusse, N.: An information-theoretic upper bound of planar graphs using triangulation. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 499–510. Springer, Heidelberg (2003)
Bender, E.A., Gao, Z., Wormald, N.C.: The number of labeled 2-connected planar graphs. The Electronic Journal of Combinatorics 9, R43 (2002)
Wright, E.M.: Graphs on unlabelled nodes with a given number of edges. Acta Math. 126, 1–9 (1971)
Khodakovsky, A., Alliez, P., Desbrun, M., Schröder, P.: Near-optimal connectivity encoding of 2-manifold polygon meshes. Graphical Models (2002) (to appear in a special issue )
King, D., Rossignac, J.: Guaranteed 3.67V bit encoding of planar triangle graphs. In: 11th Canadian Conference on Computational Geometry, pp. 146–149 (1999)
Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5, 47–61 (1999)
Frederickson, G.N., Janardan, R.: Efficient message routing in planar networks. SIAM Journal on Computing 18, 843–857 (1989)
Gavoille, C., Hanusse, N.: Compact routing tables for graphs of bounded genus. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 351–360. Springer, Heidelberg (1999)
Lu, H.-I.: Improved compact routing tables for planar networks via orderly spanning trees. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 57–66. Springer, Heidelberg (2002)
Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. In: 42th Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos (2001)
Bodirsky, M., Gröpl, C., Kang, M.: Generating labeled planar graphs uniformly at random. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1095–1107. Springer, Heidelberg (2003)
Gerke, S., McDiarmid, C.J.: On the number of edges in random planar graphs. Combinatorics, Probability & Computing (2002) (to appear)
Turán, G.: Succinct representations of graphs. Discrete Applied Mathematics 8, 289–294 (1984)
Keeler, K., Westbrook, J.: Short encodings of planar graphs and maps. Discrete Applied Mathematics 58, 239–252 (1995)
Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static trees and planar graphs. In: 38th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 118–126. IEEE Computer Society Press, Los Alamitos (1997)
Yannakakis, M.: Embedding planar graphs in four pages. Journal of Computer and System Sciences 38, 36–67 (1989)
Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications to graph encoding and graph drawing. In: 12th Symposium on Discrete Algorithms (SODA), ACM-SIAM, pp. 506–515 (2001)
Chuang, R.C.-N., Garg, A., He, X., Kao, M.-Y., Lu, H.-I.: Compact encodings of planar graphs via canonical orderings and multiple parentheses. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 118–129. Springer, Heidelberg (1998)
Schnyder, W.: Embedding planar graphs on the grid. In: 1st Symposium on Discrete Algorithms (SODA), ACM-SIAM, pp. 138–148 (1990)
Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1080–1094. Springer, Heidelberg (2003)
Goulden, I., Jackson, D.: Combinatorial Enumeration. John Wiley & Sons, Chichester (1983)
Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 1043–1053. Springer, Heidelberg (2002)
Zhang, H., He, X.: Compact visibility representation and straight-line grid embedding of plane graphs. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 493–504. Springer, Heidelberg (2003)
Bonichon, N., Le Saëc, B., Mosbah, M.: Optimal area algorithm for planar polyline drawings. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 35–46. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., Schaeffer, G. (2004). Planar Graphs, via Well-Orderly Maps and Trees. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-30559-0_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24132-4
Online ISBN: 978-3-540-30559-0
eBook Packages: Computer ScienceComputer Science (R0)