Linear Kernels in Linear Time, or How to Save k Colors in O(n 2) Steps | SpringerLink
Skip to main content

Linear Kernels in Linear Time, or How to Save k Colors in O(n 2) Steps

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

This paper examines a parameterized problem that we refer to as nk Graph Coloring, i.e., the problem of determining whether a graph G with n vertices can be colored using nk colors. As the main result of this paper, we show that there exists a O(kn 2 +k 2 + 23.8161k)=O(n 2) algorithm for nk Graph Coloring for each fixed k. The core technique behind this new parameterized algorithm is kernalization via maximum (and certain maximal) matchings.

The core technical content of this paper is a near linear-time kernelization algorithm for nk Clique Covering. The near linear-time kernelization algorithm that we present for nk Clique Covering produces a linear size (3k–3) kernel in O(k(n+m)) steps on graphs with n vertices and m edges. The algorithm takes an instance 〈G,k 〉 of Clique Covering that asks whether a graph G can be covered using |V|–k cliques and reduces it to the problem of determining whether a graph G′=(V′,E′) of size ≤ 3k–3 can be covered using |V′| – k′ cliques. We also present a similar near linear-time algorithm that produces a 3k kernel for Vertex Cover. This second kernelization algorithm is the crown reduction rule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: a guide to the theory of NP-completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  2. Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Information Processing Letters 45, 19–23 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. Journal of the ACM 41, 960–981 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability – towards tight results. SIAM Journal on Computing 27, 804–915 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: Proceedings of the Eleventh Annual IEEE Conference on Computational Complexity, pp. 278–289. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  6. Demange, M., Grisoni, P., Paschos, V.T.: Approximation results for the minimum graph coloring problem. Information Processing Letters 50, 19–23 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hassin, R., Lahav, S.: Maximizing the number of unused colors in the vertex coloring problem. Information Processing Letters 52, 87–90 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Halldórsson, M.M.: Approximating discrete collections via local improvement. In: Proceedings of the Sixth ACM-SIAM Symposium on Discrete Algorithms, pp. 160–169. ACM Press, New York (1995)

    Google Scholar 

  9. Halldórsson, M.M.: Approximating k-set cover and complementary graph coloring. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 118–131. Springer, Heidelberg (1996)

    Google Scholar 

  10. Duh, R.C., Fürer, M.: Approximation of k-set cover by semi-local optimization. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 256–264. ACM Press, New York (1997)

    Chapter  Google Scholar 

  11. Downey, R., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  12. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, p. 462–470. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the complexity of the V-C dimension. Journal of Computer and System Sciences 53 (1996)

    Google Scholar 

  14. Chen, J., Kanj, I., Jia, W.: Vertex cover:further observations and further improvements. Journal of Algorithms 41, 280–301 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM Computing Surveys 18, 23–38 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North Holland, Amsterdam (1986)

    MATH  Google Scholar 

  18. Berge, C.: Two theorems in graph theory. Proceedings of the National Academy of Sciences U.S.A. 43, 842–844 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2, 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Micali, S., Vazirani, V.V.: An \({\it O}({\sqrt{|v|}\cdot|E|})\) algorithm for finding maximum matching in general graphs. In: 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York, pp. 17–27. IEEE, Los Alamitos (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chor, B., Fellows, M., Juedes, D. (2004). Linear Kernels in Linear Time, or How to Save k Colors in O(n 2) Steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics