Tolerance Based Algorithms for the ATSP | SpringerLink
Skip to main content

Tolerance Based Algorithms for the ATSP

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

In this paper we use arc tolerances, instead of arc costs, to improve Branch-and-Bound type algorithms for the Asymmetric Traveling Salesman Problem (ATSP). We derive new tighter lower bounds based on exact and approximate bottleneck upper tolerance values of the Assignment Problem (AP). It is shown that branching by tolerances provides a more rational branching process than branching by costs. Among others, we show that branching on an arc with the bottleneck upper tolerance value is the best choice, while such an arc appears quite often in a shortest cycle of the current AP relaxation. This fact shows why branching on shortest cycles was always found as a best choice. Computational experiments confirm our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balas, E., Toth, P.: Branch and bound methods. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman Problem, ch. 10, John Wiley & Sons, Chichester (1985)

    Google Scholar 

  2. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization, pp. 361–402. John Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  3. Fischetti, M., Lodi, A., Toth, P.: Exact methods for the asymmetric traveling salesman problem. In: Gutin, G., Punnen, A.P. (eds.) Chapter 2 in: The Traveling Salesman Problem and Its Variations, pp. 169–194. Kluwer, Dordrecht (2002)

    Google Scholar 

  4. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A.P. (eds.) Chapter 9 in: The Traveling Salesman Problem and Its Variations, pp. 369–444. Kluwer, Dordrecht (2002)

    Google Scholar 

  5. Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W., Zverovich, A.: Experimental analysis of heuristics for the ATSP. In: Gutin, G., Punnen, A.P. (eds.) Chapter 10 in: The Traveling Salesman Problem and Its Variations, pp. 445–489. Kluwer, Dordrecht (2002)

    Google Scholar 

  6. Goldengorin, B., Sierksma, G.: Combinatorial optimization tolerances calculated in linear time. SOM Research Report 03A30, University of Groningen, Groningen, The Netherlands (2003), http://www.ub.rug.nl/eldoc/som/a/03A30/03a30.pdf

  7. Greenberg, H.: An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization. In: Woodruff, D.L. (ed.) Advances in computational and stochastic optimization, logic programming, and heuristic search, pp. 97–148. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  8. Helsgaun, K.: An effective implementation of the Lin-Kernigan traveling salesman heuristic. European Journal of Operational Research 126, 106–130 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hubert, L.J., Arabie, P.: Comparing Partitions. Journal of Classification 2, 193–218 (1985)

    Article  Google Scholar 

  10. Libura, M.: Sensitivity analysis for minimum hamiltonian path and traveling salesman problems. Discrete Applied Mathematics 30, 197–211 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Naddef, D.: Polyhedral theory and branch-and-cut algorithms for the symmetric TSP. In: Gutin, G., Punnen, A.P. (eds.) Chapter 2 in: The Traveling Salesman Problem and Its Variations, pp. 29–116. Kluwer, Dordrecht (2002)

    Google Scholar 

  12. Reinelt, G.: TSPLIB – a Traveling Salesman Problem Library. ORSA Journal on Computing 3, 376–384 (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldengorin, B., Sierksma, G., Turkensteen, M. (2004). Tolerance Based Algorithms for the ATSP. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics