Abstract
Let be the following strategy to construct a walk in a labeled digraph: at each vertex, we follow the unvisited arc of minimum label. In this work we study for which languages, applying the previous strategy over the corresponding de Bruijn graph, we finish with an Eulerian cycle, in order to obtain the minimal de Bruijn sequence of the language.
Partially supported by ECOS C00E03 (French-Chilean Cooperation), Programa Iniciativa Científica Milenio P01-005, and CONICYT Ph.D. Fellowship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Bruijn, N.G.: A combinatorial problem. Nederl. Akad. Wetensch., Proc. 49, 758–764 (1946)
Stein, S.K.: The mathematician as an explorer. Sci. Amer. 204, 148–158 (1961)
Bermond, J.C., Dawes, R.W., Ergincan, F.Ö.: De Bruijn and Kautz bus networks. Networks 30, 205–218 (1997)
Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discrete Math. 110, 43–59 (1992)
Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24, 195–221 (1982)
Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Math. 23, 207–210 (1978)
Ruskey, F., Savage, C., Wang, T.M.: Generating necklaces. J. Algorithms 13, 414–430 (1992)
Ruskey, F., Sawada, J.: Generating necklaces and strings with forbidden substrings. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 330–339. Springer, Heidelberg (2000)
Moreno, E.: Lyndon words and de bruijn sequences in a subshift of finite type. In: Harju, T., Karhumäki, J. (eds.) Proceedings of WORDS 2003. TUCS General Publications, Turku, Finland, vol. 27, pp. 400–410. Turku Centre for Computer Science (2003)
Lind, D., Marcus, B.: Symbolic Dynamics and Codings. Cambridge University Press, Cambridge (1995)
Tutte, W.T.: Graph theory. Encyclopedia of Mathematics and its Applications, vol. 21. Addison-Wesley Publishing Company Advanced Book Program, Reading (1984)
Matamala, M., Moreno, E.: Minimal Eulerian cycle in a labeled digraph. Technical Report CMM-B-04/08-108, DIM-CMM, Universidad de Chile (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moreno, E., Matamala, M. (2004). Minimal de Bruijn Sequence in a Language with Forbidden Substrings. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-30559-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24132-4
Online ISBN: 978-3-540-30559-0
eBook Packages: Computer ScienceComputer Science (R0)