A Symbolic Approach to the All-Pairs Shortest-Paths Problem | SpringerLink
Skip to main content

A Symbolic Approach to the All-Pairs Shortest-Paths Problem

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

Graphs can be represented symbolically by the Ordered Binary Decision Diagram (OBDD) of their characteristic function. To solve problems in such implicitly given graphs, specialized symbolic algorithms are needed which are restricted to the use of functional operations offered by the OBDD data structure. In this paper, a symbolic algorithm for the all-pairs shortest-paths (APSP) problem in loopless directed graphs with strictly positive integral edge weights is presented. It requires \(\Theta\bigl(\log^{2}(NB)\bigr)\) OBDD-operations to obtain the lengths and edges of all shortest paths in graphs with N nodes and maximum edge weight B. It is proved that runtime and space usage are polylogarithmic w. r. t. N and B on graph sequences with characteristic bounded-width functions. This convenient property is closed under certain graph composition operations. Moreover, an alternative symbolic approach for general integral edge weights is sketched which does not behave efficiently on general graph sequences with bounded-width functions. Finally, two variants of the APSP problem are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. In: ICCAD 1993, pp. 188–191. IEEE Press, Los Alamitos (1993)

    Google Scholar 

  2. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in n log n symbolic steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Bryant, R.E.: Symbolic manipulation of Boolean functions using a graphical representation. In: DAC 1985, pp. 688–694. ACM Press, New York (1985)

    Chapter  Google Scholar 

  4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  5. Cohen, E., Zwick, U.: All-pairs small-stretch paths. Journal of Algorithms 38, 335–353 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM Journal on Computing 29, 1740–1759 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  8. Feigenbaum, J., Kannan, S., Vardi, M.Y., Viswanathan, M.: Complexity of problems on graphs represented as OBDDs. Chicago Journal of Theoretical Computer Science 1999 (1999)

    Google Scholar 

  9. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components in a linear number of symbolic steps. In: SODA 2003, pp. 573–582. ACM Press, New York (2003)

    Google Scholar 

  10. Gentilini, R., Policriti, A.: Biconnectivity on symbolically represented graphs: A linear solution. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 554–564. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Hachtel, G.D., Hermida, M., Pardo, A., Poncino, M., Somenzi, F.: Re-Encoding sequential circuits to reduce power dissipation. In: ICCAD 1994, pp. 70–73. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  12. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer Academic Publishers, Boston (1996)

    MATH  Google Scholar 

  13. Hachtel, G.D., Somenzi, F.: A symbolic algorithm for maximum flow in 0–1 networks. Formal Methods in System Design 10, 207–219 (1997)

    Article  Google Scholar 

  14. Hojati, R., Touati, H., Kurshan, R.P., Brayton, R.K.: Efficient ω-regular language containment. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 396–409. Springer, Heidelberg (1993)

    Google Scholar 

  15. Jin, H., Kuehlmann, A., Somenzi, F.: Fine-grain conjunction scheduling for symbolic reachability analysis. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 312–326. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Krause, M.: BDD-based cryptanalysis of keystream generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 222–237. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Moon, I., Kukula, J.H., Ravi, K., Somenzi, F.: To split or to conjoin: The question in image computation. In: DAC 2000, pp. 23–28. ACM Press, New York (2000)

    Chapter  Google Scholar 

  18. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for the computation of fair cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Sawitzki, D.: Experimental studies of symbolic shortest-path algorithms. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 482–497. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 301–313. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Sawitzki, D.: Implicit flow maximization on grid networks. Technical report, Universität Dortmund (2004)

    Google Scholar 

  22. Sawitzki, D.: Implicit maximization of flows over time. Technical report, Universität Dortmund (2004)

    Google Scholar 

  23. Sawitzki, D.: On graphs with characteristic bounded-width functions. Technical report, Universität Dortmund (2004)

    Google Scholar 

  24. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM, Philadelphia (2000)

    Google Scholar 

  25. Woelfel, P.: The OBDD-size of cographs. Internal report, Universität Dortmund (2003)

    Google Scholar 

  26. Woelfel, P.: Symbolic topological sorting with oBDDs. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 671–680. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Xie, A., Beerel, P.A.: Implicit enumeration of strongly connected components. In: ICCAD 1999, pp. 37–40. ACM Press, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sawitzki, D. (2004). A Symbolic Approach to the All-Pairs Shortest-Paths Problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics