Bimodular Decomposition of Bipartite Graphs | SpringerLink
Skip to main content

Bimodular Decomposition of Bipartite Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

This paper gives a decomposition theory for bipartite graphs. It uses bimodules, a special case of 2-modules (also known as homogeneous pairs, an extension of both modules and splits). It is shown how a unique decomposition tree represents the bimodular decomposition of a bipartite graph, with strong analogs with modular decomposition of graphs. An O(mn 3) algorithm for this decomposition is provided. At least a classification of the 2-modules of a bipartite graph is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fouquet, J., Giakoumakis, V., Vanherpe, J.: Bipartite graphs totally decomposable by canonical decomposition. International Journal of Fundations of Computer Science 10, 513–534 (1999)

    Article  MathSciNet  Google Scholar 

  2. Cunningham, W., Edmonds, J.: A combinatorial decomposition theory. Canadian Journal of Mathematics 32, 734–765 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Mathematics 37, 35–50 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Mohring, R., Radermacher, F.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Mathematics 19, 257–356 (1984)

    MathSciNet  Google Scholar 

  5. Cournier, A., Habib, M.: A new linear Algorithm for Modular Decomposition. Lectures notes in Computer Science, pp. 68–84 (1994)

    Google Scholar 

  6. Dahlhaus, E., Gustedt, J., McConnell, R.: Efficient and practical modular decomposition. In: SODA 1997, pp. 26–35 (1997)

    Google Scholar 

  7. McConnell, R., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Mathematics 201, 189–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed graphs. To appear in Discrete Applied Mathematics (2003)

    Google Scholar 

  9. Sumner, D.P.: Graphs indecomposable with respect to the X-join. Discrete Mathematics 6, 281–298 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. de Montgolfier, F.: Décomposition modulaire des graphes. Théorie, extensions et algorithmes. PhD thesis, Université Montpellier II (2003) (in French), available at http://www.lirmm.fr/~montgolfier

  11. Chvátal, V., Sbihi, N.: Bull-free berge graphs are perfect. Graphs Combinatorics 3, 127–139 (1987)

    Article  MATH  Google Scholar 

  12. Everett, H., Klein, S., Reed, B.: An algorithm for finding homogeneous pairs. Discrete Applied Mathematics 72, 209–218 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cunningham, W.: Decomposition of directed graphs. SIAM Journal of algebraic and discrete methods 3, 214–228 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dahlhaus, E.: Parallel algorithms for hierarchical clustering, and applications to split decomposition and parity graph recognition. Journal of Algorithms 36, 205–240 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lozin, V.: On maximum induced matchings in bipartite graphs. Information Processing Letters 81, 7–11 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fouquet, JL., Habib, M., de Montgolfier, F., Vanherpe, JM. (2004). Bimodular Decomposition of Bipartite Graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics