Lexicographic Breadth First Search – A Survey | SpringerLink
Skip to main content

Lexicographic Breadth First Search – A Survey

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

Lexicographic Breadth First Search, introduced by Rose, Tarjan and Lueker for the recognition of chordal graphs is currently the most popular graph algorithmic search paradigm, with applications in recognition of restricted graph families, diameter approximation for restricted families and determining a dominating pair in an AT-free graph. This paper surveys this area and provides new directions for further research in the area of graph searching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bandelt, H.-K., Mulder, H.M.: Distance-hereditary graphs. J. Combin. Theory B 41, 182–208 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berry, A., Bordat, J.-P.: Separability generalizes Dirac’s theorem. Disc. Appl. Math. 84, 43–53 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brandstädt, A., Dragan, F.F.: On linear and circular structure of a (claw,net)- free graph. Disc. Appl. Math. 129, 285–303 (2003)

    Article  MATH  Google Scholar 

  5. Brandstädt, A., Dragan, F.F., Nicolai, F.: LexBFS-orderings and powers of chordal graphs. Disc. Math. 171, 27–42 (1997)

    Article  MATH  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Disc. Math. and Applic., SIAM (1999)

    Google Scholar 

  7. Bretscher, A.: LexBFS based recognition algorithms for cographs and related families, Ph.D. thesis in preparation, Dept. of Computer Science, University of Toronto, oronto, Canada

    Google Scholar 

  8. Bretscher, A., Corneil, D.G., Habib, M., Paul, C.: A simple linear time lexBFS cograph recognition algorithm. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 119–130. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Chang, J.-M., Ho, C.-W., Ko, M.-T.: LexBFS-ordering in asteroidal triple-free graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 163–172. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Choi, V., Farach-Colton, M.: Barnacle: an assembly algorithm for clone-based sequences of whole genomes. Gene 320, 165–176 (2003)

    Article  Google Scholar 

  11. Corneil, D.G.: A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Disc. Appl. Math. 138, 371–379 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Corneil, D.G., Dragan, F.F., Habib, M., Paul, C.: Diameter determination on restricted graph families. Disc. Appl. Math. 113, 143–166 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Corneil, D.G., Dragan, F.F., Koehler, E.: On the power of BFS to determine a graph’s diameter. Networks 42, 209–222 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Corneil, D.G., Koehler, E.: unpublished manuscript

    Google Scholar 

  15. Corneil, D.G., Koehler, E., Lanlignel, J.-M.: On LBFS end-vertices (in preparation)

    Google Scholar 

  16. Corneil, D.G., Krueger, R.: A unified view of graph searching (in preparation)

    Google Scholar 

  17. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs, under revision; extended abstract appeared as The ultimate interval graph recognition algorithm? (extended abstract). In: Proc. SODA 1998. Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.175–180 (1998)

    Google Scholar 

  18. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 1284–1297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dragan, F.F.: Almost diameter of a house-hole-free graph in linear time via LexBFS. Disc. Appl. Math. 95, 223–239 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dragan, F.F.: Estimating all pairs shortest paths in restricted graph families: A unified approach. In: Brandstädt, A., Van Le, B. (eds.) WG 2001. LNCS, vol. 2204, pp. 103-116. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Dragan, F.F., Nicolai, F.: Lex-BFS-orderings of distance-hereditary graphs, Schriftenreihe des Fachbereichs Mathematik der Universität Duisburg, Duisburg, Germany, SM-DU-303 (1995)

    Google Scholar 

  22. Dragan, F.F., Nicolai, F., Brandstädt, A.: LexBFS-orderings and powers of graphs. In: D’Amore, F., Marchetti-Spaccamela, A., Franciosa, P.G. (eds.) WG 1996. LNCS, vol. 1197, pp. 166–180. Springer, Heidelberg (1997)

    Google Scholar 

  23. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)

    MATH  MathSciNet  Google Scholar 

  24. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-bfs and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoret. Comput. Sci. 234, 59–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hell, P., Huang, J.: Certifying LexBFS recognition algorithms for proper interval graphs and proper interval bigraphs. SIAM J. Disc. Math (2004) (To appear)

    Google Scholar 

  26. Jacobson, M.S., McMorris, F.R., Mulder, H.M.: Tolerance intersection graphs. In: Alavi, Y., et al. (eds.) 1988 International Kalamazoo Graph Theory Conference, pp. 705–724. Wiley, Chichester (1991)

    Google Scholar 

  27. Jamison, B., Olariu, S.: On the semi-perfect elimination. Advances in Appl. Math. 9, 364–376 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kratsch, D., Stewart, L.: Domination on cocomparability graphs. SIAM J. Disc. Math. 6, 400–417 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18, 68–81 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lanlignel, J.-M.: Private communications (1999)

    Google Scholar 

  31. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Computers Math. Applic. 25, 15–25 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ma, T.: unpublished manuscript

    Google Scholar 

  33. McConnell, R.M., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Proc. SODA 1994, Fifth Annual ACMSIAM Symposium on Discrete Algorithms, pp. 536–545 (1994)

    Google Scholar 

  34. Meister, D.: Recognizing and computing minimal triangulations efficiently, Technical Report 302, Fakulät für Mathematik und Informatik, Universität Würzburg (2002)

    Google Scholar 

  35. Nicolai, F.: A hypertree characterization of distance-hereditary graphs, manuscript, Gerhard-Mercator-Universität Duisburg (1996)

    Google Scholar 

  36. Olariu, S.: An optimal greedy heuristic to color interval graphs. Inform. Process. Lett. 37, 65–80 (1991)

    Article  MathSciNet  Google Scholar 

  37. Ramalingam, G., Pandu Rangan, C.: A uniform approach to domination problems on interval graphs. Inform. Process. Lett. 27, 271–274 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  38. Raychaudhuri, A.: On powers of interval and unit interval graphs. Congr. Numer. 59, 235–242 (1987)

    MathSciNet  Google Scholar 

  39. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, New York (1969)

    Google Scholar 

  40. Roberts, F.S.: On the compatibility between a graph and a simple order. J. Combin. Theory Ser. B 11, 28–38 (1971)

    Article  MATH  Google Scholar 

  41. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  44. Simon, K.: A new simple linear algorithm to recognize interval graphs. LNCS 553, 289–308 (1992)

    Google Scholar 

  45. Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien in Rn, Ph.D. thesis, Universität Göttigen, Germany (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corneil, D.G. (2004). Lexicographic Breadth First Search – A Survey. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics