Approximating the Minmax Subtree Cover Problem in a Cactus | SpringerLink
Skip to main content

Approximating the Minmax Subtree Cover Problem in a Cactus

  • Conference paper
Algorithms and Computation (ISAAC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3341))

Included in the following conference series:

  • 1731 Accesses

Abstract

Let G=(V,E) be a connected graph such that edges and vertices are weighted by nonnegative reals. Let p be a positive integer. The minmax subtree cover problem (MSC) asks to find a partition χ = {X 1,X 2,...,X p } of V and a set of p subtrees T 1,T 2,...,T p , each T i containing X i so as to minimize the maximum cost of the subtrees, where the cost of T i is defined to be the sum of the weights of edges in T i and the weights of vertices in X i . In this paper, we propose an O(p 2 n) time (4– 4/(p + 1))-approximation algorithm for the MSC when G is a cactus. This is the first constant factor approximation algorithm for the MSC on a class of non-tree graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asano, T., Katoh, N., Kawashima, K.: A new approximation algorithm for the capacitated vehicle routing problem on a tree. J. Combinatorial Optimization 5, 213–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Averbakh, I., Berman, O.: Sales-delivery man problems on treelike networks. Networks 25, 45–58 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minmax routing of two traveling salesmen on a tree. Discrete Applied Mathematics 68, 17–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Averbakh, I., Berman, O.: (p − 1)/(p + 1)–approximate algorithm for p–traveling salesmen problems on a tree with minmax objective. Discrete Applied Mathematics 75, 201–216 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time constrained routing and scheduling. In: Ball, M.O., Magnanti, T.L. (eds.) Handbooks in Operations Research and Management Science, Network Routing, vol. 8, pp. 35–139. North-Holland, Amsterdam (1995)

    Google Scholar 

  6. Karuno, Y., Nagamochi, H., Ibaraki, T.: Vehicle scheduling on a tree to minimize maximum lateness. Journal of the Operations Research Society of Japan 39, 345–355 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Karuno, Y., Nagamochi, H., Ibaraki, T.: Vehicle scheduling on a tree with release and handling times. Annals of Operations Research 69, 193–207 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nagamochi, H.: Approximating the minmax rooted-subtree cover problem (submitted to a journal)

    Google Scholar 

  9. Nagamochi, H., Okada, K.: A faster 2-approximation algorithm for the minmax p–traveling salesmen problem on a tree. Discrete Applied Mathematics 140, 103–114 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nagamochi, H., Okada, K.: Polynomial time 2-approximation algorithms for the minmax subtree cover problem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 138–147. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Perl, Y., Vishkin, U.: Efficient implementation of a shifting algorithm, technique for the partitioning. Discrete Applied Mathematics 12, 71–80 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Psaraftis, H., Solomon, M., Magnanti, T., Kim, T.: Routing and scheduling on a shoreline with release times. Management Science 36, 212–223 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagamochi, H., Kawada, T. (2004). Approximating the Minmax Subtree Cover Problem in a Cactus. In: Fleischer, R., Trippen, G. (eds) Algorithms and Computation. ISAAC 2004. Lecture Notes in Computer Science, vol 3341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30551-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30551-4_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24131-7

  • Online ISBN: 978-3-540-30551-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics