Component-Based Cascade Linear Discriminant Analysis for Face Recognition | SpringerLink
Skip to main content

Component-Based Cascade Linear Discriminant Analysis for Face Recognition

  • Conference paper
Advances in Biometric Person Authentication (SINOBIOMETRICS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3338))

Included in the following conference series:

Abstract

This paper presents a novel face recognition method based on cascade Linear Discriminant Analysis (LDA) of the component-based face representation. In the proposed method, a face image is represented as four components with overlap at the neighboring area rather than a whole face patch. Firstly, LDA is conducted on the principal components of each component individually to extract component discriminant features. Then, these features are further concatenated to undergo another LDA to extract the final face descriptor, which actually have assigned different weights to different component features. Our experiments on the FERET face database have illustrated the effectiveness of the proposed method compared with the traditional Fisherface method both for face recognition and verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Samal, P.A.I.: Automatic Recognition and Analysis of Human Faces and Facial Expressions: A Survey. Pattern Recognition 25(1), 65–77 (1992)

    Article  Google Scholar 

  2. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and Machine Recognition of faces: A survey. Proc. of the IEEE 83(5), 705–740 (1995)

    Article  Google Scholar 

  3. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey, Technical Report, CS-TR4167, University of Maryland, Revised, CS-TR4167R (2000)

    Google Scholar 

  4. Brunelli, R., Poggio, T.: Face Recognition. Features versus Template, TPAMI 15(10), 1042–1052 (1993)

    Google Scholar 

  5. Heisele, B., Ho, P., Poggio, T.: Face Recognition with Support Vector Machine: Global versus Component-based Approach. In: International Conference on Computer Vision (2001)

    Google Scholar 

  6. Sirovitch, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A 2, 519–524 (1987)

    Article  Google Scholar 

  7. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)

    Google Scholar 

  8. Belhumer, P., Hespanha, P., Kriegman, D.: Eigenfaecs vs fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  9. Fleming, M., Cottrell, G.: Categorization of faces using unsupervised feature extraction. In: Proc. IEEE IJCNN International Joint Conference on Neural Networks, pp. 65–70 (1990)

    Google Scholar 

  10. Moghaddam, B., Wahid, W., Pentland, A.: Beyond eigenfaces: probabilistic matching for face recognition. In: Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pp. 30–35 (1998)

    Google Scholar 

  11. Lanitis, A., Taylor, C., Cootes, T.: Automatic interpretation and coding of face images using flexible models. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 743–756 (1997)

    Article  Google Scholar 

  12. Penev, P., Atick, J.: Local Feature Analysis: A General Statistical Theory for Object Representation. Network: Computation in Neural Systems 7, 477–500 (1996)

    Article  MATH  Google Scholar 

  13. Zhang, J., Yan, Y., Lades, M.: Face Recognition: Eigenface, Elastic Matching and Neural Nets. Proceedings of the IEEE 85(9), 1422–1435 (1997)

    Article  Google Scholar 

  14. Wiskott, L., Fellous, J.M., Kruger, N., Malsburg, C.V.D.: Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. On PAMI 19(7), 775–779 (1997)

    Google Scholar 

  15. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley Interscience, USA

    Google Scholar 

  16. Kim, T.-K., Kim, H., Hwang, W., Kee, S.C., Lee, J.H.: Component-based LDA Face Descriptor for Image Retrieval. In: BMVC (2002)

    Google Scholar 

  17. Rizvi, S., Phillips, P.J., Moon, H.: The FERET Verification Testing Protocol for Face Recognition Algorithm, Image and Vision Computing J. (to appear)

    Google Scholar 

  18. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  19. Jones, M.J., Viola, P.: Face Recognition Using Boosted Local Features, Technical Report, MITSUBISHI ELECTRIC RESEARCH LABORATORIES, TR2003–25 April (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, W., Shan, S., Gao, W., Chang, Y., Cao, B. (2004). Component-Based Cascade Linear Discriminant Analysis for Face Recognition. In: Li, S.Z., Lai, J., Tan, T., Feng, G., Wang, Y. (eds) Advances in Biometric Person Authentication. SINOBIOMETRICS 2004. Lecture Notes in Computer Science, vol 3338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30548-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30548-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24029-7

  • Online ISBN: 978-3-540-30548-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics