A Neuro-fuzzy Approach for Predicting the Effects of Noise Pollution on Human Work Efficiency | SpringerLink
Skip to main content

A Neuro-fuzzy Approach for Predicting the Effects of Noise Pollution on Human Work Efficiency

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

  • 110 Accesses

Abstract

In this paper, an attempt has been made to develop a neuro-fuzzy model for predicting the effects of noise pollution on human work efficiency as a function of noise level, type of task, and exposure time. Originally, the model was developed using fuzzy logic based on literature survey. So, the data used in the present study has been synthetically generated from the previous fuzzy model. The model is implemented on Fuzzy Logic Toolbox of MATLAB© using adaptive neuro-fuzzy inference system (ANFIS). ANFIS discussed in this paper is functionally equivalent to Sugeno fuzzy model. Out of the total input/output data sets, 80% was used for training the model and 20% for checking purpose to validate the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zadeh, L.A.: Soft Computing and Fuzzy Logic. IEEE Software, 48–56 (November 1994)

    Google Scholar 

  2. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zadeh, L.A.: Fuzzy Algorithm. Information and Control 12, 94–102 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Syst., Man, and Cyber. SMC-3, 28–44 (1973)

    Google Scholar 

  5. Suter, A.H.: Noise and its effects (1991), This is available online at, http://www.nonoise.org/library/suter/suter.html

  6. Arnoult, W.D., Voorhees, J.W.: Effects of aircraft noise on an intelligibility task. Human Factors 22, 183–188 (1980)

    Google Scholar 

  7. Fu, Q.J., Shanno, R.V., Wang, X.: Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. J. Acoust. Soc. Am. 6, 3586–3596 (1998)

    Article  Google Scholar 

  8. Percival, L., Loeb, M.: Influence of noise characteristics on behavioural after-effects. Human Factors 22, 341–352 (1980)

    Google Scholar 

  9. Hygge, S., Evans, G.W., Bullinger, M.: The Munich Airport Noise Study: Psychological, cognitive, motivational, and quality of life effects on children. In: Vallet, M. (ed.) Noise as a Public Health Problem, pp. 301–308. INRETS, France (1993)

    Google Scholar 

  10. Banbury, S., Berry, D.C.: Disruption of office related tasks by speech and office noise. Brit. J. Psychol. 89, 499–517 (1998)

    Google Scholar 

  11. Herrmann, D.J., Crawford, M., Holdsworth, M.: Gender-linked differences in everyday memory performance. Brit. J. Psychol. 83, 221–231 (1992)

    Google Scholar 

  12. Westerman, S.J., Davies, D.R., Glendon, A.I., Stammers, R.B., Matthews, G.: Ageing and word processing competence: compensation or compilation? Brit. J. Psychol. 89, 579–597 (1998)

    Google Scholar 

  13. Lin, Y., Cunningham, G.A.: A New Approach to Fuzzy-Neural System Modelling. IEEE Trans. Fuzzy Syst. 3, 190–198 (1995)

    Article  Google Scholar 

  14. Figueiredo, M., Gomide, F.: Design of Fuzzy Systems Using Neuro-fuzzy Networks. IEEE Trans. Neural Networks 10, 815–827 (1999)

    Article  Google Scholar 

  15. Chakraborty, D., Pal, N.R.: Integrated Feature Analysis and Fuzzy Rule-Based System Identification in a Neuro-Fuzzy Paradigm. IEEE Trans. Syst., Man, and Cyber. 31, 391–400 (2001)

    Article  Google Scholar 

  16. Chakraborty, D., Pal, N.R.: A Neuro-Fuzzy Scheme for Simultaneous Feature Selection and Fuzzy Rule-Based Classification. IEEE Trans. Neural Networks 15, 110–123 (2004)

    Article  Google Scholar 

  17. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. First Indian Reprint. Pearson Education, New Delhi (2004)

    Google Scholar 

  18. Jang, J.-S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, and Cyber. 23, 665–685 (1993)

    Article  Google Scholar 

  19. Kasabov, N.: DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)

    Article  Google Scholar 

  20. Wang, J.S., Lee, C.S.G.: Self-adaptive neuro-fuzzy inference systems for classification applications. IEEE Trans. Fuzzy Syst. 10, 790–802 (2002)

    Article  Google Scholar 

  21. Rutkowski, L., Cpalka, K.: Flexible Neuro-Fuzzy Systems. IEEE Trans. Neural Networks. 14, 554–574 (2003)

    Article  Google Scholar 

  22. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel distributed processing: explorations in the microstructure of cognition, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  23. Sugeno, M., Kang, G.T.: Structure Identification of Fuzzy Models. Fuzzy Sets and Systems 28, 15–33 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and its Applications to Modelling and Control. IEEE Trans. Syst., Man, and Cyber. 15, 116–132 (1985)

    MATH  Google Scholar 

  25. Fuzzy Logic Toolbox for use with MATLAB®. The MathWorks Inc., USA (2000)

    Google Scholar 

  26. Zaheeruddin, Singh, G.V., Jain, V.K.: Fuzzy Modelling of Human Work Efficiency in Noisy Environment. In: Proc. The IEEE Internat. Conf. Fuzzy Systems, vol. 1, pp. 120–124 (2003)

    Google Scholar 

  27. Zaheeruddin, Jain, V.K.: A Fuzzy Approach for Modelling the Effects of Noise Pollution on Human Performance. Internat. Journal of Advance Computational Intelligence and Intelligent Informatics 8 (2004) (to appear )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zaheeruddin, Garima (2004). A Neuro-fuzzy Approach for Predicting the Effects of Noise Pollution on Human Work Efficiency. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_146

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_146

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics