Modeling the Tax Code | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3292))

Abstract

In this paper, we argue for the necessity of constructing an ontology which represents the U.S. Internal Revenue Code (IRC). Doing so would enable the construction of a broad range of intelligent applications, including automatic auditing software, robust on-line help systems, and tax question-answering systems. In this paper, we propose the construction of a rich ontology which models the tax code. We examine some of the unique challenges presented by a tax ontology and provide examples of the types of knowledge necessary for such an ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The Internal Revenue Code (2004), http://www.fourmilab.ch/ustax/ustax.html

  2. GAO-02-711R IRS Budget Justification Options. General Accounting Office Washington, DC (2002), www.unclefed.com/GAOReports/d02711r.pdf

  3. TurboTax, www.intuit.com

  4. Genesereth, M.: Knowledge Interchange Format specification (1995), http://logic.stanford.edu/kif/specification.html

  5. PowerLoom Knowledge Representation System (2004), http://www.isi.edu/isd/LOOM/PowerLoom/

  6. FrameNet (2004), http://www.icsi.berkeley.edu/~framenet/

  7. Cyc (2004), http://www.cyc.com

  8. OpenMind (2004), http://www.openmind.org/

  9. Chalupsky, H.: WhyNot: debugging failed queries in large knowledge bases. In: Proceedings of the Eighteenth national conference on Artificial Intelligence (2002)

    Google Scholar 

  10. Mommers, L.: Applied legal epistemology: building a knowledge-based ontology of the legal domain, Ph.D. thesis (2002)

    Google Scholar 

  11. Valente, A., Russ, T., MacGregor, R., Swartout, W.: Building, Using and Reusing an Ontology of Air Campaign Planning. IEEE Intelligent Systems 14(1), 27–36 (1999)

    Article  Google Scholar 

  12. Valente, A., Breuker, J.: Legal Modelling and Automated Reasoning with ON-LINE. International Journal of Human-Computer Studies 51(6), 1079–1125 (1999)

    Article  Google Scholar 

  13. Valente, A., Breuker, J.: Towards Principled Core Ontologies. In: Gaines, B., Musen, M. (eds.) Proceedings of the Tenth Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW 1996), Banff, pp. 33/1–33/20 (1996)

    Google Scholar 

  14. McCarty, T.: A language for legal discourse I. basic structures. In: Proc. of the Second International Conference on AI and Law, Vancouver, pp. 180–189. ACM, New York (1989)

    Google Scholar 

  15. Valente, A.: Roles and Uses of Ontologies in AI and Law. In: Law and the Semantic Web, Springer, Heidelberg (2004) (in press)

    Google Scholar 

  16. Benjamins, V.R., Contreras, J., Casanovas, P., Ayuso, M.: Ontologies of Professional Legal Knowledge as the Basis for Intelligent IT Support for Judges. In: Proceedings of the ICAIL 2003 Workshop on Legal Ontologies & Web based legal information management (2003)

    Google Scholar 

  17. Visser, P.S., Bench-Capon, T.M.: A Comparison of Four Ontologies for the Design of Legal Knowledge Systems. Artificial Intelligence and Law 6, 25–57 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melz, E., Valente, A. (2004). Modeling the Tax Code. In: Meersman, R., Tari, Z., Corsaro, A. (eds) On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops. OTM 2004. Lecture Notes in Computer Science, vol 3292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30470-8_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30470-8_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23664-1

  • Online ISBN: 978-3-540-30470-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics