Abstraction-Driven Verification of Array Programs | SpringerLink
Skip to main content

Abstraction-Driven Verification of Array Programs

  • Conference paper
Artificial Intelligence and Symbolic Computation (AISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3249))

Abstract

We describe a refutation-based theorem proving algorithm capable of checking the satisfiability of non-ground formulae modulo (a combination of) theories. The key idea is the use of abstraction to drive the application of (i) ground satisfiability checking modulo theories axiomatized by equational clauses, (ii) Presburger arithmetic, and (iii) quantifier instantiation. A prototype implementation is used to discharge the proof obligations necessary to show the correctness of some typical programs manipulating arrays. On these benchmarks, the prototype automatically discharge more proof obligations than Simplify – the prover of reference for program checking – thereby confirming the viability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armando, A., Ranise, S., Rusinowitch, M.: A Rewriting Approach to Satisfiability Procedures. Info. and Comp. 183(2), 140–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Déharbe, D., Ranise, S.: Light-Weight Theorem Proving for Debugging and Verifying Units of Code. In: Proc. of the 1st Int. Conf. on Software Engineering and Formal Methods (SEFM 2003), IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  3. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A Theorem Prover for Program Checking. Technical Report HPL-2003-148, HP Lab (2003)

    Google Scholar 

  4. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Pr., London (1972)

    MATH  Google Scholar 

  5. Filliâtre, J.-C., Magaud, N.: Certification of Sorting Algorithms in the System Coq. In: Theorem Proving in Higher Order Logics: Emerging Trends (1999)

    Google Scholar 

  6. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM TOPLAS 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  8. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Hand. of Automated Reasoning (2001)

    Google Scholar 

  9. Nonnengart, A., Weidenbach, C.: Handbook of Automated Reasoning, chapter Computing Small Clause Normal Forms. Elsevier Science, Amsterdam (2001)

    Google Scholar 

  10. Suzuki, N., Jefferson, D.R.: Verification Decidability of Presburger Array Programs. J. of the ACM 27(1), 191–205 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson–Oppen combination procedure. In: Front. of Combining Systems: Proc. of the 1st Int. Workshop, pp. 103–120. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  12. van Hentenryck, P., Graf, T.: Standard Forms for Rational Linear Arithmetics in Constraint Logic Programming. Ann. of Math. and Art. Intell. 5, 303–319 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Déharbe, D., Imine, A., Ranise, S. (2004). Abstraction-Driven Verification of Array Programs. In: Buchberger, B., Campbell, J. (eds) Artificial Intelligence and Symbolic Computation. AISC 2004. Lecture Notes in Computer Science(), vol 3249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30210-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30210-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23212-4

  • Online ISBN: 978-3-540-30210-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics