The Synchronous Condition-Based Consensus Hierarchy | SpringerLink
Skip to main content

The Synchronous Condition-Based Consensus Hierarchy

  • Conference paper
Distributed Computing (DISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3274))

Included in the following conference series:

Abstract

In the context of a system made up of n processes where at most t can crash, the condition-based approach studies restrictions on the inputs of a distributed problem, called conditions, that make it solvable, or easier to solve (in case it is solvable without restricting its inputs). Previous work studied conditions for consensus and other agreement problems, mostly for asynchronous systems. This paper considers the condition-based approach for consensus in synchronous systems, and establishes a bridge between the asynchronous and synchronous models, with a hierarchy \( {\cal S}_t^{[-t]}\subset\cdots\subset {\cal S}_t^{[0]}\subset\cdots\subset {\cal S}_t^{[t]} \) where \({\cal S}_t^{[t]}\) includes all conditions (and in particular the trivial one made up of all possible input vectors). For a condition \(C \in{\cal S}_t^{[d]}\), –tdt, we have:

  • For values of d ≤ 0 we have the hierarchy of conditions (we introduced in PODC’01) where consensus is solvable by more and more efficient protocols in an asynchronous system with t failures, as we go from d=0 to d=–t.

  • For values of d>0 consensus is not solvable in an asynchronous system with t failures, but it is solvable in a synchronous system with more and more rounds, as we go from d=1 (two rounds) to d=t (t+1 rounds).

  • d=0 is the borderline case where consensus is solvable in an asynchronous system with t failures, and optimally in a synchronous system (we proved this in DISC’03).

The two main results of this paper are proving the second item above. For the upper bound, the paper presents a generic synchronous early-deciding uniform consensus protocol. When instantiated with a condition \(C \in {\cal S}_t^{[d]}\), 1≤ dt<n, the processes decide in at most min (α + 1,f + 2,t + 1) rounds, where f is the number of actual crashes, and α=d if the input vector belongs to C, or α=+∞ otherwise. The paper establishes a corresponding lower bound stating that d+1 rounds are necessary to get a decision when the input vector belong to C.

This work has been supported by a grant from LAFMI (Franco-Mexican Lab in Computer Science). Proofs ommitted here for lack of space appear in [26].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Attiya, H., Avidor, Z.: Wait-Free n-Set Consensus When Inputs Are Restricted. In: 16th Int. Symp. on DIStributed Computing. LNCS, vol. 2508, pp. 326–338. Springer, Heidelberg (2002)

    Google Scholar 

  2. Aguilera, M.K., Toueg, S.: A Simple Bivalency Proof that t-Resilient Consensus Requires t + 1 Rounds. Information Processing Letters 71, 155–178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 451 pages. McGraw-Hill, New York (1998)

    Google Scholar 

  4. Ben Or, M.: Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols. In: 2nd ACM Symposium on Principles of Distributed Computing (PODC 1983), Montréal (CA), pp. 27–30 (1983)

    Google Scholar 

  5. Chaudhuri, S.: More Choices Allow More Faults: set Consensus Problems in Totally Asynchronous Systems. Information and Computation 105, 132–158 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chandra, T.K., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM 43(2), 225–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Charron-Bost, B., Schiper, A.: Uniform Consensus is Harder than Consensus. Technical Report DSC/2000/028, EPFL, Lausanne (Switzerland) (May 2000)

    Google Scholar 

  8. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching Approximate Agreement in the Presence of Faults. JACM 33(3), 499–516 (1986)

    Article  MathSciNet  Google Scholar 

  9. Dolev, D., Reischuk, R., Strong, R.: Early Stopping in Byzantine Agreement. JACM 37(4), 720–741 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the Presence of Partial Synchrony. JACM 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  11. Dwork, C., Moses, Y.: Knowledge and Common Knowledge in a Byzantine Environment: Crash Failures. Information Computation 88(2), 156–186 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fischer, M.J., Lynch, N.: A Lower Bound for the Time to Assure Interactive Consistency. Information Processing Letters 71, 183–186 (1982)

    Article  MathSciNet  Google Scholar 

  13. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus with One Faulty Process. JACM 32(2), 374–382 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedman, R., Mostefaoui, A., Rajsbaum, S., Raynal, M.: Asynchronous Distributed Agreement and its Relation with Error Correcting Codes. In: 16th Int. Symp. on DIStributed Computing. LNCS, vol. 2508, pp. 63–87. Springer, Heidelberg (2002)

    Google Scholar 

  15. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony. In: 17th ACM Symp. on Principles of Distributed Computing, pp. 143–152 (1998)

    Google Scholar 

  16. Herlihy, M.P.: Wait-Free Synchronization. ACM TOPLAS 11(1), 124–149 (1991)

    Article  Google Scholar 

  17. Hurfin, M., Mostefaoui, A., Raynal, M.: A Versatile Family of Consensus Protocols Based on Chandra-Toueg’s Unreliable Failure Detectors. IEEE Transactions on Computers 51(4), 395–408 (2002)

    Article  Google Scholar 

  18. Herlihy, M.P., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and asynchronous message-passing models. In: 17th ACM Symp. on Principles of Distributed Computing, pp. 133–142 (1998)

    Google Scholar 

  19. Keidar, I., Rajsbaum, S.: A Simple Proof of the Uniform Consensus Synchronous Lower Bound. Information Processing Letters 85, 47–52 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lamport, L., Fischer, M.: Byzantine Generals and Transaction Commit Protocols, 16 pages (April 1982) (unpublished manuscript)

    Google Scholar 

  21. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (1996)

    MATH  Google Scholar 

  22. Moses, Y., Rajsbaum, S.: A Layered Analysis of Consensus. SIAM Journal of Computing 31(4), 989–1021 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mostefaoui, A., Rajsbaum, S., Raynal, M.: Conditions on Input Vectors for Consensus Solvability in Asynchronous Distributed Systems. JACM 50(6), 922–954 (2003)

    Article  MathSciNet  Google Scholar 

  24. Mostefaoui, A., Rajsbaum, S., Raynal, M.: Using Conditions to Expedite Consensus in Synchronous Systems. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 249–263. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Mostefaoui, A., Rajsbaum, S., Raynal, M., Roy, M.: Condition-based Consensus Sovability: a Hierarchy of Conditions and Efficient Protocols. Distributed Computing 17, 1–20 (2004)

    Article  Google Scholar 

  26. Mostefaoui, A., Rajsbaum, S., Raynal, M.: The Synchronous Condition-Based Consensus Hierarchy. Tech Report 1584, 26 pages, IRISA, Univ. de Rennes 1 (December 2003), http://www.irisa.fr/bibli/publi/pi/2003/1584/1584.html

  27. Mostefaoui, A., Raynal, M.: Leader-Based Consensus. Parallel Processing Letters 11(1), 95–107 (2001)

    Article  MathSciNet  Google Scholar 

  28. Neiger, G., Toueg, S.: Automatically Increasing the Fault-Tolerance of Distributed Algorithms. Journal of Algorithms 11, 374–419 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Raynal, M.: Consensus in Synchronous Systems: a Concise Guided Tour. In: 9th IEEE Pacific Rim Int. Symp. on Dependable Computing, pp. 221–228 (2002)

    Google Scholar 

  30. Zibin, Y.: Condition-Based Consensus in Synchronous Systems. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 239–248. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mostefaoui, A., Rajsbaum, S., Raynal, M. (2004). The Synchronous Condition-Based Consensus Hierarchy. In: Guerraoui, R. (eds) Distributed Computing. DISC 2004. Lecture Notes in Computer Science, vol 3274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30186-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30186-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23306-0

  • Online ISBN: 978-3-540-30186-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics