Abstract
In this article we study the use of SPECT perfusion imaging for the diagnosis of Alzheimer’s disease. We present a classifier based approach that does not need any explicit knowledge about the pathology. We directly use the voxel intensities as features. This approach is compared with three classical approaches: regions of interests, statistical parametric mapping and visual analysis which is the most commonly used method. We tested our method both on simulated and on real data. The realistic simulations give us total control about the ground truth. On real data, our method was more sensitive than the human experts, while having an acceptable specificity. We conclude that an automatic method can be a useful help for clinicians.
Chapter PDF
Similar content being viewed by others
Keywords
- Statistical Parametric Mapping
- Voxel Intensity
- Perfusion Pattern
- Single Photon Emit Computer Tomography
- Hexamethyl Propylene Amine
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M.: Mental and clinical diagnosis of Alzheimer’s disease: report of the NINCDSADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7), 939–944 (1984)
Folstein, M.F., Folstein, S.E., McHugh, P.R.: Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12(3), 189–198 (1975)
Gosche, K.M., Mortimer, J.A., Smith, C.D., Markesbery, W.R., Snowdon, D.A.: Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology 58(10), 1476–1482 (2002)
Goethals, C., van de Wiele, D., Slosman, R., Dierckx, R.: Brain SPET perfusion in early Alzheimer’s disease: where to look? European Journal of Nuclear Medicine 29(8), 975–978 (2002)
Van Gool, W.A., Walstra, G.J., Teunisse, S., Van der Zant, F.M., Weinstein, H.C., Van Royen, E.A.: Diagnosing Alzheimer’s disease in elderly, mildly demented patients: the impact of routine single photon emission computed tomography. Journal of Neurology 242(6), 401–405 (1995)
Kogure, D., Matsuda, H., Ohnishi, T., Asada, T., Uno, M., Kunihiro, T., Nakano, S., Takasaki, M.: Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. Journal of Nuclear Medicine 41(7), 1155–1162 (2000)
Braak, H., Braak, E.: Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiology and Aging 18(4), S85–S88 (1997)
Dawson, M.R., Dobbs, A., Hooper, H.R., McEwan, A.J., Triscott, J., Cooney, J.: Artificial neural networks that use single-photon emission tomography to identify patients with probable Alzheimer’s disease. European Journal of Nuclear Medicine 21(12), 1303–1311 (1994)
Hamilton, D., O’Mahony, D., Coffey, J., Murphy, J., O’Hare, N., Freyne, P., Walsh, B., Coakley, D.: Classification of mild Alzheimer’s disease by artificial neural network analysis of SPET data. Nuclear Medicine Communications 18(9), 805–810 (1997)
Frackowiak, R.S.J., Friston, K.J., Frith, C.D., Dolan, R.: Human Brain Function. Academic Press, London (1997)
Ashburner, J., Friston, K., Holmes, A., Poline, J.-B.: Statistical Parametric Mapping. In: SPM1999. The Welcome Department of Cognitive Neurology. Institute of Neurology, University College, London (1999), Freely available at http://www.fil.ion.ucl.ac.uk/spm
Stoeckel, J., Malandain, G., Migneco, O., Koulibaly, P.M., Robert, P., Ayache, N., Darcourt, J.: Classification of SPECT images of normal subjects versus images of Alzheimer’s disease patients. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 666–674. Springer, Heidelberg (2001)
Roche, A., Malandain, G., Pennec, X., Ayache, N.: The Correlation Ratio as a New Similarity Metric for Multimodal Image Registration. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1115–1124. Springer, Heidelberg (1998)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1997)
Prima, S., Ourselin, S., Ayache, N.: Computation of the mid-sagittal plane in 3D brain images. IEEE Transaction on Medical Imaging 21(2), 122–138 (2002)
Duin, R.P.W.: Classifiers in Almost Empty Spaces. In: Proceedings of the 15th International Conference on Pattern Recognition (ICPR 2000), vol. 2, pp. 1–7 (2000)
Shürmann, J.: Polynomklassifikatoren für Zeichenerkennung. R. Oldenburg Verlag, Munchen (1977)
Raudys, S.J., Duin, R.P.W.: Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recognition Letters 19, 385–392 (1998)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)
Zubal, I.G., Harrell, C.R., Smith, E.O., Rattner, Z., Gindi, G., Hoffer, P.B.: Computerized 3-Dimensional Segmented Human Anatomy. Medical Physics 21(2), 299–302 (1994)
Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic Feature Based Nonrigid Registration: The PASHA Algorithm. Computer Vision and Image Understanding 89(1-2) (2003)
Soonawala, D., Amin, T., Ebmeier, K.P., Steele, J.D., Dougall, N.J., Best, J., Migneco, O., Nobili, F., Scheidhauer, K.: Statistical parametric mapping of (99m)Tc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. Neuroimage 17(3), 1193–1202 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stoeckel, J., Ayache, N., Malandain, G., Koulibaly, P.M., Ebmeier, K.P., Darcourt, J. (2004). Automatic Classification of SPECT Images of Alzheimer’s Disease Patients and Control Subjects. In: Barillot, C., Haynor, D.R., Hellier, P. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. MICCAI 2004. Lecture Notes in Computer Science, vol 3217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30136-3_80
Download citation
DOI: https://doi.org/10.1007/978-3-540-30136-3_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22977-3
Online ISBN: 978-3-540-30136-3
eBook Packages: Springer Book Archive