TempoExpress, a CBR Approach to Musical Tempo Transformations | SpringerLink
Skip to main content

TempoExpress, a CBR Approach to Musical Tempo Transformations

  • Conference paper
Advances in Case-Based Reasoning (ECCBR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3155))

Included in the following conference series:

Abstract

In this paper, we describe a CBR system for applying musically acceptable tempo transformations to monophonic audio recordings of musical performances. Within the tempo transformation process, the expressivity of the performance is adjusted in such a way that the result sounds natural for the new tempo. A case base of previously performed melodies is used to infer the appropriate expressivity. Tempo transformation is one of the audio post-processing tasks manually done in audio-labs. Automatizing this process may, therefore, be of industrial interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arcos, J.L., Grachten, M., López de Mántaras, R.: Extracting performer’s behaviors to annotate cases in a CBR system for musical tempo transformations. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Cambouropoulos, E.: Melodic cue abstraction, similarity and category formation: a formal model. Music Perception 18(3), 347–370 (2001)

    Article  Google Scholar 

  3. Desain, P., Honing, H.: Tempo curves considered harmful. In: Kramer, J.D. (ed.) Time in contemporary musical thought’. Contemporary Music Review, vol. 7(2) (1993)

    Google Scholar 

  4. Friberg, A.: Generative rules for music performance: A formal description of a rule system. Computer Music Journal 15(2), 56–71 (1991)

    Article  MathSciNet  Google Scholar 

  5. Gómez, E., Gouyon, F., Herrera, P., Amatriain, X.: Using and enhancing the current mpeg-7 standard for a music content processing tool. In: Proceedings of Audio Engineering Society, 114th Convention, Amsterdam, The Netherlands (2003)

    Google Scholar 

  6. Gómez, E., Klapuri, A., Meudic, B.: Melody description and extraction in the context of music content processing. Journal of New Music Research 32(1) (2003)

    Google Scholar 

  7. Grachten, M., Arcos, J.L., López de Mántaras, R.: A comparison of different approaches to melodic similarity. In: Second International Conference on Music and Artificial Intelligence, ICMAI (2002)

    Google Scholar 

  8. Grachten, M., Arcos, J.L., López de Mántaras, R.: In: Wiil, U.K. (ed.) CMMR 2004. LNCS, vol. 3310, pp. 347–358. Springer, Heidelberg (2005) (to appear)

    Google Scholar 

  9. Koffka, K.: Principles of Gestalt Psychology. Routledge & Kegan Paul, London (1935)

    Google Scholar 

  10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  11. Narmour, E.: The Analysis and cognition of basic melodic structures: the implication-realization model. University of Chicago Press (1990)

    Google Scholar 

  12. Narmour, E.: The Analysis and cognition of melodic complexity: the implicationrealization model. University of Chicago Press (1992)

    Google Scholar 

  13. Plaza, E., Arcos, J.-L.: Constructive adaptation. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 306–320. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Serra, X., Lopez de Mantaras, R., Arcos, J.L.: Saxex: a case-based reasoning system for generating expressive musical performances. In: Proceedings of the International Computer Music Conference 1997, pp. 329–336 (1997)

    Google Scholar 

  15. Suzuki, T.: The second phase development of case based performance rendering system “Kagurame”. In: Working Notes of the IJCAI 2003 Rencon Workshop, pp. 23–31 (2003)

    Google Scholar 

  16. Temperley, D.: The Cognition of Basic Musical Structures. MIT Press, Cambridge (2001)

    Google Scholar 

  17. Widmer, G.: Machine discoveries: A few simple, robust local expression principles. Journal of New Music Research 31(1), 37–50 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grachten, M., Arcos, J.L., López de Mántaras, R. (2004). TempoExpress, a CBR Approach to Musical Tempo Transformations. In: Funk, P., González Calero, P.A. (eds) Advances in Case-Based Reasoning. ECCBR 2004. Lecture Notes in Computer Science(), vol 3155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28631-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28631-8_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22882-0

  • Online ISBN: 978-3-540-28631-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics