A Statistical Mechanics Analysis of Gram Matrix Eigenvalue Spectra | SpringerLink
Skip to main content

A Statistical Mechanics Analysis of Gram Matrix Eigenvalue Spectra

  • Conference paper
Learning Theory (COLT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3120))

Included in the following conference series:

Abstract

The Gram matrix plays a central role in many kernel methods. Knowledge about the distribution of eigenvalues of the Gram matrix is useful for developing appropriate model selection methods for kernel PCA. We use methods adapted from the statistical physics of classical fluids in order to study the averaged spectrum of the Gram matrix. We focus in particular on a variational mean-field theory and related diagrammatic approach. We show that the mean-field theory correctly reproduces previously obtained asymptotic results for standard PCA. Comparison with simulations for data distributed uniformly on the sphere shows that the method provides a good qualitative approximation to the averaged spectrum for kernel PCA with a Gaussian Radial Basis Function kernel. We also develop an analytical approximation to the spectral density that agrees closely with the numerical solution and provides insight into the number of samples required to resolve the corresponding process eigenvalues of a given order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Engel, A., Van den Broeck, C.: Statistical Mechanics of Learning CUP, Cambridge (2001)

    Google Scholar 

  2. Scholköpf, B., Smola, A., Müller, K.-R.: Neural Computation 10, 1299 (1998)

    Article  Google Scholar 

  3. Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Advances in Neural Information Processing Systems  16 (2003)

    Google Scholar 

  4. Johnstone, I.M.: Ann Stat. 29, 295 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hoyle, D.C., Rattray, M.: Advances in Neural Information Processing Systems 16 (2003)

    Google Scholar 

  6. Shawe-Taylor, J., Williams, C.K.I., Cristiannini, N., Kandola, J.: Proc. of Algorithmic Learning Theory 23 (2002)

    Google Scholar 

  7. Anderson, T.W.: Ann. Math. Stat. 34, 122 (1963)

    Article  MATH  Google Scholar 

  8. Marčenko, V.A., Pastur, L.A.: Math. USSR-Sb 1, 507 (1967)

    Google Scholar 

  9. Bai, Z.D.: Statistica Sinica  9, 611 (1999)

    Google Scholar 

  10. Sengupta, A.M., Mitra, P.P.: Phys. Rev. E 60, 3389 (1999)

    Google Scholar 

  11. Silverstein, J.W., Combettes, P.L.: IEEE Trans. Sig. Proc. 40, 2100 (1992)

    Article  Google Scholar 

  12. Hoyle, D.C., Rattray, M.: Europhys.Lett 62, 117–123 (2003)

    Article  Google Scholar 

  13. Reimann, P., Van den Broeck, C., Bex, G.J.: J. Phys. A 29, 3521 (1996)

    Google Scholar 

  14. Mézard, M., Parisi, G., Zee, A.: Nucl. Phys. B[FS] 599, 689 (1999)

    Article  Google Scholar 

  15. Hansen, J.-P., McDonald, I.R.: Theory of Simple Liquids, 2nd edn. Academic Press, London (1986)

    Google Scholar 

  16. Hochstadt, H.: The Functions of Mathematical Physics. Dover, New York (1986)

    MATH  Google Scholar 

  17. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1957)

    Google Scholar 

  18. Twining, C.J., Taylor, C.J.: Pattern Recognition 36, 217 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoyle, D.C., Rattray, M. (2004). A Statistical Mechanics Analysis of Gram Matrix Eigenvalue Spectra. In: Shawe-Taylor, J., Singer, Y. (eds) Learning Theory. COLT 2004. Lecture Notes in Computer Science(), vol 3120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27819-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27819-1_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22282-8

  • Online ISBN: 978-3-540-27819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics