Abstract
The Gram matrix plays a central role in many kernel methods. Knowledge about the distribution of eigenvalues of the Gram matrix is useful for developing appropriate model selection methods for kernel PCA. We use methods adapted from the statistical physics of classical fluids in order to study the averaged spectrum of the Gram matrix. We focus in particular on a variational mean-field theory and related diagrammatic approach. We show that the mean-field theory correctly reproduces previously obtained asymptotic results for standard PCA. Comparison with simulations for data distributed uniformly on the sphere shows that the method provides a good qualitative approximation to the averaged spectrum for kernel PCA with a Gaussian Radial Basis Function kernel. We also develop an analytical approximation to the spectral density that agrees closely with the numerical solution and provides insight into the number of samples required to resolve the corresponding process eigenvalues of a given order.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Engel, A., Van den Broeck, C.: Statistical Mechanics of Learning CUP, Cambridge (2001)
Scholköpf, B., Smola, A., Müller, K.-R.: Neural Computation 10, 1299 (1998)
Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Advances in Neural Information Processing Systems 16 (2003)
Johnstone, I.M.: Ann Stat. 29, 295 (2001)
Hoyle, D.C., Rattray, M.: Advances in Neural Information Processing Systems 16 (2003)
Shawe-Taylor, J., Williams, C.K.I., Cristiannini, N., Kandola, J.: Proc. of Algorithmic Learning Theory 23 (2002)
Anderson, T.W.: Ann. Math. Stat. 34, 122 (1963)
Marčenko, V.A., Pastur, L.A.: Math. USSR-Sb 1, 507 (1967)
Bai, Z.D.: Statistica Sinica 9, 611 (1999)
Sengupta, A.M., Mitra, P.P.: Phys. Rev. E 60, 3389 (1999)
Silverstein, J.W., Combettes, P.L.: IEEE Trans. Sig. Proc. 40, 2100 (1992)
Hoyle, D.C., Rattray, M.: Europhys.Lett 62, 117–123 (2003)
Reimann, P., Van den Broeck, C., Bex, G.J.: J. Phys. A 29, 3521 (1996)
Mézard, M., Parisi, G., Zee, A.: Nucl. Phys. B[FS] 599, 689 (1999)
Hansen, J.-P., McDonald, I.R.: Theory of Simple Liquids, 2nd edn. Academic Press, London (1986)
Hochstadt, H.: The Functions of Mathematical Physics. Dover, New York (1986)
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1957)
Twining, C.J., Taylor, C.J.: Pattern Recognition 36, 217 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoyle, D.C., Rattray, M. (2004). A Statistical Mechanics Analysis of Gram Matrix Eigenvalue Spectra. In: Shawe-Taylor, J., Singer, Y. (eds) Learning Theory. COLT 2004. Lecture Notes in Computer Science(), vol 3120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27819-1_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-27819-1_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22282-8
Online ISBN: 978-3-540-27819-1
eBook Packages: Springer Book Archive