Abstract
We present a general framework for computing various optimal embeddings of undirected and directed connected graphs in two and multi-dimensional integer lattices in time sub-exponential either in the minimum number n of lattice points used by such optimal embeddings or in the budget upper bound b on the number of lattice points that may be used in an embedding. The sub-exponential upper bounds in the two dimensional case and d-dimensional case are respectively of the form 2\(^{O(\sqrt{ln}log n)}\), 2\(^{O(\sqrt{lb}log b)}\) and 2\(^{O(dl^{1/d_n (d-1)/d}{\rm log} n)}\), 2\(^{O(dl^{1/d_b (d-1)/d}{\rm log} b)}\), where l stands for the degree of the allowed overlap. For the problem of minimum total edge length planar or multi-dimensional embedding or layout of a graph and the problem of an optimal protein folding in the so called HP model we obtain the upper bounds in terms of n. Note that in case of protein folding n is also the size of the input. The list of problems for which we can derive the upper bounds in terms of b includes among other things:
-
1
a minimum area planar embedding or layout of a graph,
-
2
a minimum bend planar or three dimensional embedding or layout,
-
3
a minimum maximum edge length planar or three dimensional embedding or layout.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Seymour, P., Thomas, R.: A separator Theorem for Graphs with an Excluded Minor and its Applications. In: 22nd ACM STOC, pp. 293–299 (1990)
Arora, S.: Polynomial-time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Combinatorial Optimization Problems and Their Approximability Properties. Springer, Berlin (1999)
Berger, B., Leighton, T.: Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP-Complete. In: Proc. RECOMB 1998, New York, pp. 30–39 (1998)
Crescenzi, P., Goldman, D., Papadimitriou, C.H., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. Journal of Computational Biology 5(3), 423–466 (1998)
Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24, 1501 (1985)
Eppstein, D., Miller, G.L., Teng, S.-H.: A deterministic linear time algorithm for geometric separators and its applications. In: Proc. Symposium on Computational Geometry, pp. 99–108 (1993)
Formann, M., Wagner, F.: The VLSI layout problem in various embedding models. In: Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 130–139. Springer, Heidelberg (1991)
Hart, W.E., Istrail, S.: Fast protein folding in the hydrophobic-hydrophilic model within three-eights of optimal. In: 27th annual ACM Symposium on Theory of Computing, pp. 157–168 (1995)
Leighton, F.T.: New Lower Bound Techniques for VLSI. In: Proc. 22nd Annual Symposium on Foundations of Computer Science, pp. 1–12 (1981)
Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: FOCS, pp. 270–281 (1980)
Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)
Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.A.: Geometric separators for finite-element meshes. SIAM J. Sci. Comput. 19(2), 364–386 (1998)
Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.A.: Separators for spherepackings and nearest neighbor graphs. Journal of the ACM 44(1), 1–29 (1997)
Miller, G.L., Teng, S.-H., Vavasis, S.A.: A unified geometric approach to graph separators. In: Proc. 31st Annual Symposium on Foundations of Computer Science, pp. 538–547 (1991)
Nayak, A.: Spatial codes and the hardness of string folding problems (extended abstract). In: Proc. Symposium on Discrete Algorithms, pp. 639–648 (1998)
Nishizeki, T.: Drawing plane graphs. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 2–5. Springer, Heidelberg (2003)
Paterson, M.S., Przytycka, T.M.: On the complexity of string folding. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 658–669. Springer, Heidelberg (1996)
Patrignani, M.: On the Complexity of Orthogonal Compaction. In: Workshop on Algorithms and Data Structures, pp. 56–61 (1999)
Raghavan, P.: Line and plane separators. Technical Report UIUCDCS-R-93-1794 (1993)
Storer, J.A.: The node cost measure for embedding graphs on the planar grid. In: Proc. 12th annual ACM Symposium on Theory of Computing, pp. 201–210 (1980)
Tamassia, R.: On Embedding a Graph in the Grid with the Minimum Number of Bends. SIAM J. Comput. 16(3), 421–444 (1987)
Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Rockville (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dessmark, A., Lingas, A., Lundell, EM. (2004). Subexponential-Time Framework for Optimal Embeddings of Graphs in Integer Lattices. In: Hagerup, T., Katajainen, J. (eds) Algorithm Theory - SWAT 2004. SWAT 2004. Lecture Notes in Computer Science, vol 3111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27810-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-27810-8_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22339-9
Online ISBN: 978-3-540-27810-8
eBook Packages: Springer Book Archive