Subexponential-Time Framework for Optimal Embeddings of Graphs in Integer Lattices | SpringerLink
Skip to main content

Subexponential-Time Framework for Optimal Embeddings of Graphs in Integer Lattices

  • Conference paper
Algorithm Theory - SWAT 2004 (SWAT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3111))

Included in the following conference series:

  • 1461 Accesses

Abstract

We present a general framework for computing various optimal embeddings of undirected and directed connected graphs in two and multi-dimensional integer lattices in time sub-exponential either in the minimum number n of lattice points used by such optimal embeddings or in the budget upper bound b on the number of lattice points that may be used in an embedding. The sub-exponential upper bounds in the two dimensional case and d-dimensional case are respectively of the form 2\(^{O(\sqrt{ln}log n)}\), 2\(^{O(\sqrt{lb}log b)}\) and 2\(^{O(dl^{1/d_n (d-1)/d}{\rm log} n)}\), 2\(^{O(dl^{1/d_b (d-1)/d}{\rm log} b)}\), where l stands for the degree of the allowed overlap. For the problem of minimum total edge length planar or multi-dimensional embedding or layout of a graph and the problem of an optimal protein folding in the so called HP model we obtain the upper bounds in terms of n. Note that in case of protein folding n is also the size of the input. The list of problems for which we can derive the upper bounds in terms of b includes among other things:

  1. 1

    a minimum area planar embedding or layout of a graph,

  2. 2

    a minimum bend planar or three dimensional embedding or layout,

  3. 3

    a minimum maximum edge length planar or three dimensional embedding or layout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Seymour, P., Thomas, R.: A separator Theorem for Graphs with an Excluded Minor and its Applications. In: 22nd ACM STOC, pp. 293–299 (1990)

    Google Scholar 

  2. Arora, S.: Polynomial-time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Combinatorial Optimization Problems and Their Approximability Properties. Springer, Berlin (1999)

    MATH  Google Scholar 

  4. Berger, B., Leighton, T.: Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP-Complete. In: Proc. RECOMB 1998, New York, pp. 30–39 (1998)

    Google Scholar 

  5. Crescenzi, P., Goldman, D., Papadimitriou, C.H., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. Journal of Computational Biology 5(3), 423–466 (1998)

    Article  Google Scholar 

  6. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24, 1501 (1985)

    Article  Google Scholar 

  7. Eppstein, D., Miller, G.L., Teng, S.-H.: A deterministic linear time algorithm for geometric separators and its applications. In: Proc. Symposium on Computational Geometry, pp. 99–108 (1993)

    Google Scholar 

  8. Formann, M., Wagner, F.: The VLSI layout problem in various embedding models. In: Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 130–139. Springer, Heidelberg (1991)

    Google Scholar 

  9. Hart, W.E., Istrail, S.: Fast protein folding in the hydrophobic-hydrophilic model within three-eights of optimal. In: 27th annual ACM Symposium on Theory of Computing, pp. 157–168 (1995)

    Google Scholar 

  10. Leighton, F.T.: New Lower Bound Techniques for VLSI. In: Proc. 22nd Annual Symposium on Foundations of Computer Science, pp. 1–12 (1981)

    Google Scholar 

  11. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: FOCS, pp. 270–281 (1980)

    Google Scholar 

  12. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.A.: Geometric separators for finite-element meshes. SIAM J. Sci. Comput. 19(2), 364–386 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.A.: Separators for spherepackings and nearest neighbor graphs. Journal of the ACM 44(1), 1–29 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Miller, G.L., Teng, S.-H., Vavasis, S.A.: A unified geometric approach to graph separators. In: Proc. 31st Annual Symposium on Foundations of Computer Science, pp. 538–547 (1991)

    Google Scholar 

  16. Nayak, A.: Spatial codes and the hardness of string folding problems (extended abstract). In: Proc. Symposium on Discrete Algorithms, pp. 639–648 (1998)

    Google Scholar 

  17. Nishizeki, T.: Drawing plane graphs. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 2–5. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Paterson, M.S., Przytycka, T.M.: On the complexity of string folding. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 658–669. Springer, Heidelberg (1996)

    Google Scholar 

  19. Patrignani, M.: On the Complexity of Orthogonal Compaction. In: Workshop on Algorithms and Data Structures, pp. 56–61 (1999)

    Google Scholar 

  20. Raghavan, P.: Line and plane separators. Technical Report UIUCDCS-R-93-1794 (1993)

    Google Scholar 

  21. Storer, J.A.: The node cost measure for embedding graphs on the planar grid. In: Proc. 12th annual ACM Symposium on Theory of Computing, pp. 201–210 (1980)

    Google Scholar 

  22. Tamassia, R.: On Embedding a Graph in the Grid with the Minimum Number of Bends. SIAM J. Comput. 16(3), 421–444 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Rockville (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dessmark, A., Lingas, A., Lundell, EM. (2004). Subexponential-Time Framework for Optimal Embeddings of Graphs in Integer Lattices. In: Hagerup, T., Katajainen, J. (eds) Algorithm Theory - SWAT 2004. SWAT 2004. Lecture Notes in Computer Science, vol 3111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27810-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27810-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22339-9

  • Online ISBN: 978-3-540-27810-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics