Polynomial-Time Algorithms for the Ordered Maximum Agreement Subtree Problem | SpringerLink
Skip to main content

Polynomial-Time Algorithms for the Ordered Maximum Agreement Subtree Problem

  • Conference paper
Combinatorial Pattern Matching (CPM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3109))

Included in the following conference series:

Abstract

For a set of rooted, unordered, distinctly leaf-labeled trees, the NP-hard maximum agreement subtree problem (MAST) asks for a tree contained (up to isomorphism or homeomorphism) in all of the input trees with as many labeled leaves as possible. We study the ordered variants of MAST where the trees are uniformly or non-uniformly ordered. We provide the first known polynomial-time algorithms for the uniformly and non-uniformly ordered homeomorphic variants as well as the uniformly and non-uniformly ordered isomorphic variants of MAST. Our algorithms run in time O(kn 3), O(n 3 min { nk, n + logk − 1 n }), O(kn 3), and O((k+n)n 3), respectively, where n is the number of leaf labels and k is the number of input trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Amir, A., Keselman, D.: Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms. SIAM J. Computing 26(6), 1656–1669 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H., Downey, R., Fellows, M., Wareham, T.: The parameterized complexity of sequence alignment and consensus. Theor. Comput. Sci. 147, 31–54 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonizzoni, P., Della Vedova, G., Mauri, G.: Approximating the maximum isomorphic agreement subtree is hard. International Journal of Foundations of Computer Science 11(4), 579–590 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bryant, D.: Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury (1997)

    Google Scholar 

  6. Farach, M., Przytycka, T., Thorup, M.: On the agreement of many trees. Information. Processing Letters 55, 297–301 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fellows, M., Hallett, M., Stege, U.: Analogs & duals of the MAST problem for sequences & trees. Journal of Algorithms 49(1), 192–216 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalizations, geometry and algorithms. Discrete Applied Mathematics 74, 13–32 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: Inferring ordered trees from local constraints. In: proceedings of CATS 1998 Australian Computer Science Communications, vol. 20(3), pp. 67–76. Springer, Heidelberg (1998)

    Google Scholar 

  10. Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization 3, 183–197 (1999)

    Article  MathSciNet  Google Scholar 

  11. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Applied Mathematics 71, 153–169 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kao, M.-Y., Lam, T.-W., Sung, W.-K., Ting, H.-F.: An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings. Journal of Algorithms 40(2), 212–233 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25(2), 322–336 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Smolenskii, E.A.: Jurnal Vicisl. Mat. i Matem. Fiz 2, 371–372 (1962)

    MathSciNet  Google Scholar 

  15. Steel, M., Warnow, T.: Kaikoura tree theorems: Computing the maximum agreement subtree. Information Processing Letters 48, 77–82 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sung, W.-K.: Fast Labeled Tree Comparison via Better Matching Algorithms. PhD thesis, University of Hong Kong (1998)

    Google Scholar 

  17. Timkovsky, V.G.: Complexity of common subsequence and supersequence problems and related problems. Cybernetics 25, 1–13 (1990)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dessmark, A., Jansson, J., Lingas, A., Lundell, EM. (2004). Polynomial-Time Algorithms for the Ordered Maximum Agreement Subtree Problem. In: Sahinalp, S.C., Muthukrishnan, S., Dogrusoz, U. (eds) Combinatorial Pattern Matching. CPM 2004. Lecture Notes in Computer Science, vol 3109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27801-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27801-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22341-2

  • Online ISBN: 978-3-540-27801-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics