Experimental Studies of Symbolic Shortest-Path Algorithms | SpringerLink
Skip to main content

Experimental Studies of Symbolic Shortest-Path Algorithms

  • Conference paper
Experimental and Efficient Algorithms (WEA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3059))

Included in the following conference series:

Abstract

Graphs can be represented symbolically by the Ordered Binary Decision Diagram (OBDD) of their characteristic function. To solve problems in such implicitly given graphs, specialized symbolic algorithms are needed which are restricted to the use of functional operations offered by the OBDD data structure. In this paper, two symbolic algorithms for the single-source shortest-path problem with nonnegative positive integral edge weights are presented which represent symbolic versions of Dijkstra’s algorithm and the Bellman-Ford algorithm. They execute \(\mathcal{O}(N\cdot{\rm log}(NB))\) resp. \(\mathcal{O}(NM\cdot{\rm log}(NB))\) OBDD-operations to obtain the shortest paths in a graph with N nodes, M edges, and maximum edge weight B. Despite the larger worst-case bound, the symbolic Bellman-Ford-approach is expected to behave much better on structured graphs because it is able to handle updates of node distances effectively in parallel. Hence, both algorithms have been studied in experiments on random, grid, and threshold graphs with different weight functions. These studies support the assumption that the Dijkstra-approach behaves efficient w. r. t. space usage, while the Bellman-Ford-approach is dominant w. r. t. runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. In: ICCAD 1993, pp. 188–191. IEEE Press, Los Alamitos (1993)

    Google Scholar 

  2. Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16, 87–90 (1958)

    MATH  MathSciNet  Google Scholar 

  3. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in n log n symbolic steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Bryant, R.E.: Symbolic manipulation of Boolean functions using a graphical representation. In: DAC 1985, pp. 688–694. ACM Press, New York (1985)

    Chapter  Google Scholar 

  5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components in a linear number of symbolic steps. In: SODA 2003, pp. 573–582. ACM Press, New York (2003)

    Google Scholar 

  8. Gentilini, R., Policriti, A.: Biconnectivity on symbolically represented graphs: A linear solution. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 554–564. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer Academic Publishers, Boston (1996)

    MATH  Google Scholar 

  10. Hachtel, G.D., Somenzi, F.: A symbolic algorithm for maximum flow in 0–1 networks. Formal Methods in System Design 10, 207–219 (1997)

    Article  Google Scholar 

  11. Hojati, R., Touati, H., Kurshan, R.P., Brayton, R.K.: Efficient ω-regular language containment. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 396–409. Springer, Heidelberg (1993)

    Google Scholar 

  12. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Elsevier Science, Amsterdam (1995)

    MATH  Google Scholar 

  13. Moon, J.H., Kukula, K.: Ravi, and F. Somenzi. To split or to conjoin: The question in image computation. In: DAC 2000, pp. 23–28. ACM Press, New York (2000)

    Chapter  Google Scholar 

  14. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for the computation of fair cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 301–313. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Sawitzki, D.: Implicit flow maximization on grid networks. Technical report, Universität Dortmund (2004)

    Google Scholar 

  17. Sawitzki, D.: On graphs with characteristic bounded-width functions. Technical report, Universität Dortmund (2004)

    Google Scholar 

  18. Sawitzki, D.: A symbolic approach to the all-pairs shortest-paths problem (2004) (submitted)

    Google Scholar 

  19. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  20. Woelfel, P.: Symbolic topological sorting with OBDDs. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 671–680. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sawitzki, D. (2004). Experimental Studies of Symbolic Shortest-Path Algorithms. In: Ribeiro, C.C., Martins, S.L. (eds) Experimental and Efficient Algorithms. WEA 2004. Lecture Notes in Computer Science, vol 3059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24838-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24838-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22067-1

  • Online ISBN: 978-3-540-24838-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics