Abstract
Soft constraints are very flexible and expressive. However, they may also be very complex to handle. For this reason, it may be convenient in several cases to pass to an abstract version of a given soft problem, and then bring some useful information from the abstract problem to the concrete one. This will hopefully make the search for a solution, or for an optimal solution, of the concrete problem, faster.
In this paper we review the main concepts and properties of our abstraction framework for soft constraints, and we show some experimental results of its application to the solution of fuzzy constraints.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bistarelli, S., Codognet, P., Georget, Y., Rossi, F.: Abstracting soft constraints. In: Apt, K.R., Kakas, A.C., Monfroy, E., Rossi, F. (eds.) Compulog Net WS 1999. LNCS (LNAI), vol. 1865, p. 108. Springer, Heidelberg (2000)
Bistarelli, S., Codognet, P., Rossi, F.: An Abstraction Framework for Soft Constraints, and Its Relationship with Constraint Propagation. In: Choueiry, B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, p. 71. Springer, Heidelberg (2000)
Bistarelli, S., Codognet, P., Rossi, F.: Abstracting Soft Constraints: Framework, Properties, Examples. Artificial Intelligence journal 139 (2002)
Bistarelli, S., Fruhwirth, T., Marte, M., Rossi, F.: Soft Constraint Propagation and Solving in Constraint Handling Rules. In: Proc. ACM Symposium on Applied Computing (2002)
Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Solving and Optimization. Journal of the ACM 44(2), 201–236 (1997)
Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Fourth ACM Symp. Principles of Programming Languages, pp. 238–252 (1977)
Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 1131–1136. IEEE, Los Alamitos (1993)
Frühwirth, T.: Theory and Practice of Constraint Handling Rules, Special Issue on Constraint Logic Programming (P. J. Stuckey and K. Marriot, Eds.). Journal of Logic Programming 37(1-3), 95–138 (1998)
Georget, Y., Codognet, P.: Compiling Semiring-based Constraints with clp(FD,S). In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 205–219. Springer, Heidelberg (1998)
Kowalczyk, R., Bui, V.A.: JFSolver: A Tool for Solving Fuzzy Constraint Satisfaction. In: Yan, H. (ed.) Proc. FUZZ-IEEE 2001, 10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia, IEEE Press, Los Alamitos (2001)
Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence Journal 8(1), 99–118 (1977)
Pilan, I., Rossi, F.: Abstracting soft constraints: some experimental results. In: Proc. ERCIM/Colognet workshop on CLP and constraint solving, Budapest (June 2003)
Ruttkay, Z.: Fuzzy constraint satisfaction. In: Proc. 3rd IEEE International Conference on Fuzzy Systems, pp. 1263–1268 (1994)
Schiex, T.: Possibilistic constraint satisfaction problems, or “how to handle soft constraints?”. In: Proc. 8th Conf. of Uncertainty in AI, pp. 269–275 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bistarelli, S., Rossi, F., Pilan, I. (2004). Abstracting Soft Constraints: Some Experimental Results on Fuzzy CSPs. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds) Recent Advances in Constraints. CSCLP 2003. Lecture Notes in Computer Science(), vol 3010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24662-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-24662-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21834-0
Online ISBN: 978-3-540-24662-6
eBook Packages: Springer Book Archive