BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model for Relation Classification | SpringerLink
Skip to main content

BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model for Relation Classification

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11108))

Abstract

Relation classification is an important task in natural language processing (NLP) fields. State-of-the-art methods are mainly based on deep neural networks. This paper proposes a bi-channel tree convolution based neural network model, BiTCNN, which combines syntactic tree features and other lexical level features together in a deeper manner for relation classification. First, each input sentence is parsed into a syntactic tree. Then, this tree is decomposed into two sub-tree sequences with top-down decomposition strategy and bottom-up decomposition strategy. Each sub-tree represents a suitable semantic fragment in the input sentence and is converted into a real-valued vector. Then these vectors are fed into a bi-channel convolutional neural network model and the convolution operations re performed on them. Finally, the outputs of the bi-channel convolution operations are combined together and fed into a series of linear transformation operations to get the final relation classification result. Our method integrates syntactic tree features and convolutional neural network architecture together and elaborates their advantages fully. The proposed method is evaluated on the SemEval 2010 data set. Extensive experiments show that our method achieves better relation classification results compared with other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  • Wang, L., Cao, Z., de Melo, G., Liu, Z.: Relation classification via multi-level attention CNNs. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1298–1307 (2016)

    Google Scholar 

  • Cai, R., Zhang, X., Wang, H.: Bidirectional recurrent convolutional neural network for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 756–765 (2016)

    Google Scholar 

  • Xu, K., Feng, Y., Huang, S., Zhao, D.: Semantic relation classification via convolutional neural networks with simple negative sampling. In: Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing, pp. 536–540 (2015a)

    Google Scholar 

  • Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H., Jin, Z.: Classifying relations via long short term memory networks along shortest dependency paths. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1785–1794 (2015b)

    Google Scholar 

  • Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: Proceedings of the 25th International Conference on Computational Linguistics, pp. 2335–2344 (2014)

    Google Scholar 

  • Zhang, Z., Zhao, H., Qin, L.: Probabilistic graph-based dependency parsing with convolutional neural network. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1382–1392 (2016)

    Google Scholar 

  • Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector grammars. In: Proceedings of the 51th Annual Meeting of the Association for Computational Linguistics, pp. 455–465 (2013a)

    Google Scholar 

  • Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013b)

    Google Scholar 

  • dos Santos, C.N., Xiang, B., Zhou, B.: Classifying relations by ranking with convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, pp. 626–634 (2015)

    Google Scholar 

  • Liu, Y., Wei, F., Li, S., Ji, H., Zhou, M., Wang, H.: A dependency-based neural network for relation classification. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, pp: 285–290 (2015)

    Google Scholar 

  • Vu, N.T., Adel, H., Gupta, P., Schutze, H.: Combining recurrent and convolutional neural networks for relation classification. In: Proceedings of NAACL-HLT 2016, pp. 534–539 (2015)

    Google Scholar 

  • Hashimoto, K., Miwa, M., Tsuruoka, Y., Chikayama, T.: Simple customization of recursive neural networks for semantic relation classification. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1372–1376 (2013)

    Google Scholar 

  • Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Conference on EMNLP and Computational Natural Language Learning, pp. 1201–1211 (2012)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC No. 61572120, 61672138 and 61432013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiliang Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, F., Li, Y., Zhao, R., Zhou, D., Liu, Z. (2018). BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model for Relation Classification. In: Zhang, M., Ng, V., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2018. Lecture Notes in Computer Science(), vol 11108. Springer, Cham. https://doi.org/10.1007/978-3-319-99495-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99495-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99494-9

  • Online ISBN: 978-3-319-99495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics