LNA++: Linear Noise Approximation with First and Second Order Sensitivities | SpringerLink
Skip to main content

LNA++: Linear Noise Approximation with First and Second Order Sensitivities

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11095))

Included in the following conference series:

  • 899 Accesses

Abstract

The linear noise approximation (LNA) provides an approximate description of the statistical moments of stochastic chemical reaction networks (CRNs). LNA is a commonly used modeling paradigm describing the probability distribution of systems of biochemical species in the intracellular environment. Unlike exact formulations, the LNA remains computationally feasible even for CRNs with many reactions. The tractability of the LNA makes it a common choice for inference of unknown chemical reaction parameters. However, this task is impeded by a lack of suitable inference tools for arbitrary CRN models. In particular, no available tool provides temporal cross-correlations, parameter sensitivities and efficient numerical integration. In this manuscript we present LNA++, which allows for fast derivation and simulation of the LNA including the computation of means, covariances, and temporal cross-covariances. For efficient parameter estimation and uncertainty analysis, LNA++ implements first and second order sensitivity equations. Interfaces are provided for easy integration with Matlab and Python.

Implementation and availability: LNA++ is implemented as a combination of C/C++, Matlab and Python scripts. Code base and the release used for this publication are available on GitHub (https://github.com/ICB-DCM/LNAplusplus) and Zenodo (https://doi.org/10.5281/zenodo.1287771).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6863
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8579
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Engblom, S.: Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006). https://doi.org/10.1016/j.amc.2005.12.032

    Article  MathSciNet  MATH  Google Scholar 

  2. Fröhlich, F., Thomas, P., Kazeroonian, A., Theis, F.J., Grima, R., Hasenauer, J.: Inference for stochastic chemical kinetics using moment equations and system size expansion. PLoS Comput. Biol. 12(7), e1005030 (2016). https://doi.org/10.1371/journal.pcbi.1005030

    Article  Google Scholar 

  3. Giagos, V.: Inference for stochastic kinetic genetic networks using the linear noise approximation, May 2011. https://rdrr.io/rforge/lnar/man/lnar-package.html

  4. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188(1), 404–425 (1992). https://doi.org/10.1016/0378-4371(92)90283-V

    Article  Google Scholar 

  5. Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.J.: Method of conditional moments (MCM) for the chemical master equation. J. Math. Biol. 69(3), 687–735 (2014). https://doi.org/10.1007/s00285-013-0711-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Hindmarsh, A.C., et al.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005). https://doi.org/10.1145/1089014.1089020

    Article  MATH  Google Scholar 

  7. Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003). https://doi.org/10.1093/bioinformatics/btg015

    Article  Google Scholar 

  8. Kazeroonian, A., Fröhlich, F., Raue, A., Theis, F.J., Hasenauer, J.: CERENA: Chemical REaction network analyzer - a toolbox for the simulation and analysis of stochastic chemical kinetics. PLoS One 11(1), e0146732 (2016). https://doi.org/10.1371/journal.pone.0146732

    Article  Google Scholar 

  9. Komorowski, M., Costa, M.J., Rand, D.A., Stumpf, M.P.H.: Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Natl. Acad. Sci. U.S.A. 108(21), 8645–8650 (2011). https://doi.org/10.1073/pnas.1015814108

    Article  Google Scholar 

  10. Komorowski, M., Finkenstädt, B., Harper, C.V., Rand, D.A.: Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinform. 10(1), 343 (2009). https://doi.org/10.1186/1471-2105-10-343

    Article  Google Scholar 

  11. Komorowski, M., Zurauskiene, J., Stumpf, M.P.H.: StochSens-MATLAB package for sensitivity analysis of stochastic chemical systems. Bioinformatics 28(5), 731–733 (2012). https://doi.org/10.1093/bioinformatics/btr714

    Article  Google Scholar 

  12. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006). https://doi.org/10.1063/1.2145882

    Article  MATH  Google Scholar 

  13. Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: StochKit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27(17), 2457–2458 (2011)

    Article  Google Scholar 

  14. Stathopoulos, V., Girolami, M.A.: Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation. Philos. Trans. Ser. A 371(1984), 20110541 (2013). https://doi.org/10.1098/rsta.2011.0541

    Article  MathSciNet  MATH  Google Scholar 

  15. Thomas, P., Matuschek, H., Grima, R.: Intrinsic noise analyzer: a software package for the exploration of stochastic biochemical kinetics using the system size expansion. PLoS One 7(6), e38518 (2013). https://doi.org/10.1371/journal.pone.0038518

    Article  Google Scholar 

  16. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North-Holland, Amsterdam (2007)

    MATH  Google Scholar 

  17. Veldhuizen, T.: Blitz++ User’s Guide, March 2006. http://sourceforge.net/projects/blitz

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten Marr or Jan Hasenauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feigelman, J., Weindl, D., Theis, F.J., Marr, C., Hasenauer, J. (2018). LNA++: Linear Noise Approximation with First and Second Order Sensitivities. In: Češka, M., Šafránek, D. (eds) Computational Methods in Systems Biology. CMSB 2018. Lecture Notes in Computer Science(), vol 11095. Springer, Cham. https://doi.org/10.1007/978-3-319-99429-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99429-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99428-4

  • Online ISBN: 978-3-319-99429-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics