Abstract
The linear noise approximation (LNA) provides an approximate description of the statistical moments of stochastic chemical reaction networks (CRNs). LNA is a commonly used modeling paradigm describing the probability distribution of systems of biochemical species in the intracellular environment. Unlike exact formulations, the LNA remains computationally feasible even for CRNs with many reactions. The tractability of the LNA makes it a common choice for inference of unknown chemical reaction parameters. However, this task is impeded by a lack of suitable inference tools for arbitrary CRN models. In particular, no available tool provides temporal cross-correlations, parameter sensitivities and efficient numerical integration. In this manuscript we present LNA++, which allows for fast derivation and simulation of the LNA including the computation of means, covariances, and temporal cross-covariances. For efficient parameter estimation and uncertainty analysis, LNA++ implements first and second order sensitivity equations. Interfaces are provided for easy integration with Matlab and Python.
Implementation and availability: LNA++ is implemented as a combination of C/C++, Matlab and Python scripts. Code base and the release used for this publication are available on GitHub (https://github.com/ICB-DCM/LNAplusplus) and Zenodo (https://doi.org/10.5281/zenodo.1287771).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Engblom, S.: Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006). https://doi.org/10.1016/j.amc.2005.12.032
Fröhlich, F., Thomas, P., Kazeroonian, A., Theis, F.J., Grima, R., Hasenauer, J.: Inference for stochastic chemical kinetics using moment equations and system size expansion. PLoS Comput. Biol. 12(7), e1005030 (2016). https://doi.org/10.1371/journal.pcbi.1005030
Giagos, V.: Inference for stochastic kinetic genetic networks using the linear noise approximation, May 2011. https://rdrr.io/rforge/lnar/man/lnar-package.html
Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188(1), 404–425 (1992). https://doi.org/10.1016/0378-4371(92)90283-V
Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.J.: Method of conditional moments (MCM) for the chemical master equation. J. Math. Biol. 69(3), 687–735 (2014). https://doi.org/10.1007/s00285-013-0711-5
Hindmarsh, A.C., et al.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005). https://doi.org/10.1145/1089014.1089020
Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003). https://doi.org/10.1093/bioinformatics/btg015
Kazeroonian, A., Fröhlich, F., Raue, A., Theis, F.J., Hasenauer, J.: CERENA: Chemical REaction network analyzer - a toolbox for the simulation and analysis of stochastic chemical kinetics. PLoS One 11(1), e0146732 (2016). https://doi.org/10.1371/journal.pone.0146732
Komorowski, M., Costa, M.J., Rand, D.A., Stumpf, M.P.H.: Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Natl. Acad. Sci. U.S.A. 108(21), 8645–8650 (2011). https://doi.org/10.1073/pnas.1015814108
Komorowski, M., Finkenstädt, B., Harper, C.V., Rand, D.A.: Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinform. 10(1), 343 (2009). https://doi.org/10.1186/1471-2105-10-343
Komorowski, M., Zurauskiene, J., Stumpf, M.P.H.: StochSens-MATLAB package for sensitivity analysis of stochastic chemical systems. Bioinformatics 28(5), 731–733 (2012). https://doi.org/10.1093/bioinformatics/btr714
Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006). https://doi.org/10.1063/1.2145882
Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: StochKit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27(17), 2457–2458 (2011)
Stathopoulos, V., Girolami, M.A.: Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation. Philos. Trans. Ser. A 371(1984), 20110541 (2013). https://doi.org/10.1098/rsta.2011.0541
Thomas, P., Matuschek, H., Grima, R.: Intrinsic noise analyzer: a software package for the exploration of stochastic biochemical kinetics using the system size expansion. PLoS One 7(6), e38518 (2013). https://doi.org/10.1371/journal.pone.0038518
van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North-Holland, Amsterdam (2007)
Veldhuizen, T.: Blitz++ User’s Guide, March 2006. http://sourceforge.net/projects/blitz
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Feigelman, J., Weindl, D., Theis, F.J., Marr, C., Hasenauer, J. (2018). LNA++: Linear Noise Approximation with First and Second Order Sensitivities. In: Češka, M., Šafránek, D. (eds) Computational Methods in Systems Biology. CMSB 2018. Lecture Notes in Computer Science(), vol 11095. Springer, Cham. https://doi.org/10.1007/978-3-319-99429-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-99429-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99428-4
Online ISBN: 978-3-319-99429-1
eBook Packages: Computer ScienceComputer Science (R0)