New Initialisation Techniques for Multi-objective Local Search | SpringerLink
Skip to main content

New Initialisation Techniques for Multi-objective Local Search

Application to the Bi-objective Permutation Flowshop

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

Abstract

Given the availability of high-performing local search (LS) for single-objective (SO) optimisation problems, a successful approach to tackle their multi-objective (MO) counterparts is scalarisation-based local search (SBLS). SBLS strategies solve multiple scalarisations, aggregations of the multiple objectives into a single scalar value, with varying weights. They have been shown to work specially well as the initialisation phase of other types of MO local search, e.g., Pareto local search (PLS). A drawback of existing SBLS strategies is that the underlying SO-LS method is unaware of the MO nature of the problem and returns only a single solution, discarding any intermediate solutions that may be of interest. We propose here two new SBLS initialisation strategies (ChangeRestart and ChangeDirection) that overcome this drawback by augmenting the underlying SO-LS method with an archive of nondominated solutions used to dynamically update the scalarisations. The new strategies produce better results on the bi-objective permutation flowshop problem than other five SBLS strategies from the literature, not only on their own but also when used as the initialisation phase of PLS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blot, A., Jourdan, L., Kessaci-Marmion, M.E.: Automatic design of multi-objective local search algorithms: case study on a bi-objective permutation flowshop scheduling problem. In: GECCO 2017, pp. 227–234. ACM Press (2017)

    Google Scholar 

  2. Drugan, M.M., Thierens, D.: Path-guided mutation for stochastic Pareto local search algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 485–495. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_49

    Chapter  Google Scholar 

  3. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP\(+\)PLS algorithm for bi-objective flow-shop scheduling problems. COR 38(8), 1219–1236 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Improving the anytime behavior of two-phase local search. AMAI 61(2), 125–154 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Combining two search paradigms for multi-objective optimization: two-phase and Pareto local search. In: Talbi, E.G. (ed.) Hybrid Metaheuristics, vol. 434, pp. 97–117. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30671-6_3

    Chapter  Google Scholar 

  6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime Pareto local search. EJOR 243(2), 369–385 (2015)

    Article  MathSciNet  Google Scholar 

  7. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. JOH 18(2), 317–352 (2011)

    MATH  Google Scholar 

  8. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. ITOR 19(4), 495–520 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. LNMES, vol. 535, pp. 177–200. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-17144-4_7

    Chapter  Google Scholar 

  10. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 479–493. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_34

    Chapter  Google Scholar 

  11. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective combinatorial optimization: a review. In: Handbook of Approximation Algorithms and Metaheuristics, pp. 29-1–29-15. Chapman & Hall/CRC (2007)

    Google Scholar 

  12. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. EJOR 177(3), 2033–2049 (2007)

    Article  Google Scholar 

  13. Taillard, É.D.: Benchmarks for basic scheduling problems. EJOR 64(2), 278–285 (1993)

    Article  Google Scholar 

  14. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE TEC 11(6), 712–731 (2007)

    Google Scholar 

  15. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE TEC 7(2), 117–132 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymeric Blot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blot, A., López-Ibáñez, M., Kessaci, MÉ., Jourdan, L. (2018). New Initialisation Techniques for Multi-objective Local Search. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics