Abstract
Visual saliency detection has lately witnessed substantial progress attributed to powerful feature representation leveraging deep convolutional neural networks (CNNs). However, existing CNN-based method has a lot of redundant computation resulting in inferring saliency maps is very time-consuming. In this paper, we propose a multiscale contrast regions deep learning framework employed to calculate salient score of an integrated image. Experimental results demonstrate that our approach is capable of achieving almost the same performance on the four public benchmarks compared to the relevant method MDF. Meanwhile, the computational efficiency is remarkably improved, when inferring the image of 400 * 300 size only takes average 3.32 s using our algorithm while MDF method consumes 8.0 s reducing rough 60% cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: International Conference on Computer Vision, Sydney, pp. 1529–1536. IEEE (2013)
Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection with applications to image thumbnailing. In: 12th International Conference on Computer Vision, Kyoto, pp. 2232–2239. IEEE (2009)
Zou, W., Liu, Z., Kpalma, K., Ronsin, J., Zhao, Y., Komodakis, N.: Unsupervised joint salient region detection and object segmentation. IEEE Trans. Image Process. 11(24), 3858–3873 (2015)
Alpert, S., Galun, M. Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: Conference on Computer Vision and Pattern Recognition, Minneapolis, pp. 1–8. IEEE (2007)
Huan, W., Guo, H., Wu, X.: Saliency attention based abnormal event detection in video. In: International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, pp. 1039–1043. IEEE (2014)
Einhäuser, W., König, P.: Does luminance-contrast contribute to a saliency map for overt visual attention? Eur. J. Neurosci. 17(5), 1089 (2003)
Parkhurst, D., Law, K., Niebur, E.: Modeling the role of salience in the allocation of overt visual attention. Vis. Res. 42(1), 107–123 (2002)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Conference on Computer Vision and Pattern Recognition, Portland, pp. 3166–3173. IEEE (2013)
Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 409–416. IEEE (2011)
Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: Conference on Computer Vision and Pattern Recognition, Minneapolis, pp. 1–8. IEEE (2007)
Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Computer Vision and Pattern Recognition (CVPR), Boston, pp. 5455–5463. IEEE (2015)
Wang, L., Lu, H., Ruan, X., Yang, M.H.: Deep networks for saliency detection via local estimation and global search. In: Computer Vision and Pattern Recognition (CVPR), Boston, pp. 3183–3192. IEEE (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)
Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: Computer Vision and Pattern Recognition (CVPR), Boston, pp. 1265–1274. IEEE (2015)
Schölkopf, B., Platt, J., Hofmann, T.: Graph-based visual saliency. In: 19th Proceedings of Neural Information Processing Systems, pp. 545–552. MIT Press (2007)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. Trans. Pattern Anal. Mach. Intell. 11(20), 1254–1259 (1998)
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: Conference on Computer Vision and Pattern Recognition, Miami, pp. 1597–1604. IEEE (2009)
Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 733–740. IEEE (2012)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Computer Vision and Pattern Recognition, Portland, pp. 1155–1162. IEEE (2013)
Chen, C., Li, S., Qin, H., Hao, A.: Structure-sensitive saliency detection via multilevel rank analysis in intrinsic feature space. IEEE Trans. Image Process. 8(24), 2303–2316 (2015)
Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 853–860. IEEE (2012)
Jia, Y., Han, M.: Category-independent object-level saliency detection. In: International Conference on Computer Vision, Sydney, pp. 1761–1768. IEEE (2013)
Chang, K.-Y., Liu, T.-L., Chen, H.-T., Lai, S.-H.: Fusing generic objectness and visual saliency for salient object detection. In: 14th International Conference on Computer Vision, Barcelona, pp. 914–921. IEEE (2011)
Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: 12th International Conference on Computer Vision, Kyoto, pp. 2106–2113. IEEE (2009)
Borji, A.: Boosting bottom-up and top-down visual features for saliency estimation. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 438–445. IEEE (2012)
Yang, J., Yang, M.H.: Top-down visual saliency via joint CRF and dictionary learning. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 2296–2303. IEEE (2012)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)
Everingham, M., Williams, C.: The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Part 1 – Challenge & Classification Task. Challenge (2010)
Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 4(38), 717–729 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Tan, T., Zeng, Q., Xuan, K. (2018). Integrating Multiscale Contrast Regions for Saliency Detection. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11013. Springer, Cham. https://doi.org/10.1007/978-3-319-97310-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-97310-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97309-8
Online ISBN: 978-3-319-97310-4
eBook Packages: Computer ScienceComputer Science (R0)