Integrating Multiscale Contrast Regions for Saliency Detection | SpringerLink
Skip to main content

Integrating Multiscale Contrast Regions for Saliency Detection

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11013))

Included in the following conference series:

Abstract

Visual saliency detection has lately witnessed substantial progress attributed to powerful feature representation leveraging deep convolutional neural networks (CNNs). However, existing CNN-based method has a lot of redundant computation resulting in inferring saliency maps is very time-consuming. In this paper, we propose a multiscale contrast regions deep learning framework employed to calculate salient score of an integrated image. Experimental results demonstrate that our approach is capable of achieving almost the same performance on the four public benchmarks compared to the relevant method MDF. Meanwhile, the computational efficiency is remarkably improved, when inferring the image of 400 * 300 size only takes average 3.32 s using our algorithm while MDF method consumes 8.0 s reducing rough 60% cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: International Conference on Computer Vision, Sydney, pp. 1529–1536. IEEE (2013)

    Google Scholar 

  2. Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection with applications to image thumbnailing. In: 12th International Conference on Computer Vision, Kyoto, pp. 2232–2239. IEEE (2009)

    Google Scholar 

  3. Zou, W., Liu, Z., Kpalma, K., Ronsin, J., Zhao, Y., Komodakis, N.: Unsupervised joint salient region detection and object segmentation. IEEE Trans. Image Process. 11(24), 3858–3873 (2015)

    MathSciNet  Google Scholar 

  4. Alpert, S., Galun, M. Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: Conference on Computer Vision and Pattern Recognition, Minneapolis, pp. 1–8. IEEE (2007)

    Google Scholar 

  5. Huan, W., Guo, H., Wu, X.: Saliency attention based abnormal event detection in video. In: International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, pp. 1039–1043. IEEE (2014)

    Google Scholar 

  6. Einhäuser, W., König, P.: Does luminance-contrast contribute to a saliency map for overt visual attention? Eur. J. Neurosci. 17(5), 1089 (2003)

    Article  Google Scholar 

  7. Parkhurst, D., Law, K., Niebur, E.: Modeling the role of salience in the allocation of overt visual attention. Vis. Res. 42(1), 107–123 (2002)

    Article  Google Scholar 

  8. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Conference on Computer Vision and Pattern Recognition, Portland, pp. 3166–3173. IEEE (2013)

    Google Scholar 

  9. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 409–416. IEEE (2011)

    Google Scholar 

  10. Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: Conference on Computer Vision and Pattern Recognition, Minneapolis, pp. 1–8. IEEE (2007)

    Google Scholar 

  11. Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Computer Vision and Pattern Recognition (CVPR), Boston, pp. 5455–5463. IEEE (2015)

    Google Scholar 

  12. Wang, L., Lu, H., Ruan, X., Yang, M.H.: Deep networks for saliency detection via local estimation and global search. In: Computer Vision and Pattern Recognition (CVPR), Boston, pp. 3183–3192. IEEE (2015)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  14. Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: Computer Vision and Pattern Recognition (CVPR), Boston, pp. 1265–1274. IEEE (2015)

    Google Scholar 

  15. Schölkopf, B., Platt, J., Hofmann, T.: Graph-based visual saliency. In: 19th Proceedings of Neural Information Processing Systems, pp. 545–552. MIT Press (2007)

    Google Scholar 

  16. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. Trans. Pattern Anal. Mach. Intell. 11(20), 1254–1259 (1998)

    Article  Google Scholar 

  17. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: Conference on Computer Vision and Pattern Recognition, Miami, pp. 1597–1604. IEEE (2009)

    Google Scholar 

  18. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 733–740. IEEE (2012)

    Google Scholar 

  19. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Computer Vision and Pattern Recognition, Portland, pp. 1155–1162. IEEE (2013)

    Google Scholar 

  20. Chen, C., Li, S., Qin, H., Hao, A.: Structure-sensitive saliency detection via multilevel rank analysis in intrinsic feature space. IEEE Trans. Image Process. 8(24), 2303–2316 (2015)

    Article  MathSciNet  Google Scholar 

  21. Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 853–860. IEEE (2012)

    Google Scholar 

  22. Jia, Y., Han, M.: Category-independent object-level saliency detection. In: International Conference on Computer Vision, Sydney, pp. 1761–1768. IEEE (2013)

    Google Scholar 

  23. Chang, K.-Y., Liu, T.-L., Chen, H.-T., Lai, S.-H.: Fusing generic objectness and visual saliency for salient object detection. In: 14th International Conference on Computer Vision, Barcelona, pp. 914–921. IEEE (2011)

    Google Scholar 

  24. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: 12th International Conference on Computer Vision, Kyoto, pp. 2106–2113. IEEE (2009)

    Google Scholar 

  25. Borji, A.: Boosting bottom-up and top-down visual features for saliency estimation. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 438–445. IEEE (2012)

    Google Scholar 

  26. Yang, J., Yang, M.H.: Top-down visual saliency via joint CRF and dictionary learning. In: Conference on Computer Vision and Pattern Recognition, Providence, pp. 2296–2303. IEEE (2012)

    Google Scholar 

  27. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  28. Everingham, M., Williams, C.: The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Part 1 – Challenge & Classification Task. Challenge (2010)

    Google Scholar 

  29. Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 4(38), 717–729 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunsheng Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, T., Zeng, Q., Xuan, K. (2018). Integrating Multiscale Contrast Regions for Saliency Detection. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11013. Springer, Cham. https://doi.org/10.1007/978-3-319-97310-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97310-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97309-8

  • Online ISBN: 978-3-319-97310-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics